Raman Spectroscopy of Graphene Edges

被引:921
作者
Casiraghi, C. [1 ]
Hartschuh, A. [2 ,3 ]
Qian, H. [2 ,3 ]
Piscanec, S. [1 ]
Georgi, C. [2 ,3 ]
Fasoli, A. [1 ]
Novoselov, K. S. [4 ]
Basko, D. M. [5 ,6 ]
Ferrari, A. C. [1 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
[2] Univ Munich, Dept Chem & Biochem, Munich, Germany
[3] Univ Munich, CeNS, Munich, Germany
[4] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England
[5] Univ Grenoble 1, Lab Phys & Modelisat Mileux Condenses, Grenoble, France
[6] CNRS, Grenoble, France
基金
欧洲研究理事会;
关键词
GRAPHITE; ELECTRON; SCATTERING; SPECTRUM; STATE;
D O I
10.1021/nl8032697
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene edges are of particular interest since their orientation determines the electronic properties. Here we present a detailed Raman investigation of graphene flakes with edges oriented at different crystallographic directions. We also develop a real space theory for Raman scattering to analyze the general case of disordered edges. The position, width, and intensity of G and D peaks are studied as a function of the incident light polarization. The D-band is strongest for polarization parallel to the edge and minimum for perpendicular. Raman mapping shows that the D peak is localized in proximity of the edge. For ideal edges, the D peak is zero for zigzag orientation and large for armchair, allowing in principle the use of Raman spectroscopy as a sensitive tool for edge orientation. However, for real samples, the D to G ratio does not always show a significant dependence on edge orientation. Thus, even though edges can appear macroscopically smooth and oriented at well-defined angles, they are not necessarily microscopically ordered.
引用
收藏
页码:1433 / 1441
页数:9
相关论文
共 61 条
[1]   THE USE OF A CHARGE-COUPLED DEVICE AND POSITION-SENSITIVE RESISTIVE ANODE DETECTOR FOR MULTIORDER SPONTANEOUS RAMAN-SPECTROSCOPY FROM SILICON [J].
ACKER, WP ;
YIP, B ;
LEACH, DH ;
CHANG, RK .
JOURNAL OF APPLIED PHYSICS, 1988, 64 (05) :2263-2270
[2]  
[Anonymous], IEEE ELECT DEVICE LE
[3]  
BARANOV AV, 1987, OPT SPEKTROSK+, V62, P1036
[4]   Resonant low-energy electron scattering on short-range impurities in graphene [J].
Basko, D. M. .
PHYSICAL REVIEW B, 2008, 78 (11)
[5]   Interplay of Coulomb and electron-phonon interactions in graphene [J].
Basko, D. M. ;
Aleiner, I. L. .
PHYSICAL REVIEW B, 2008, 77 (04)
[6]   Theory of resonant multiphonon Raman scattering in graphene [J].
Basko, D. M. .
PHYSICAL REVIEW B, 2008, 78 (12)
[7]   Effect of inelastic collisions on multiphonon Raman scattering in graphene [J].
Basko, D. M. .
PHYSICAL REVIEW B, 2007, 76 (08)
[8]   Making graphene visible [J].
Blake, P. ;
Hill, E. W. ;
Castro Neto, A. H. ;
Novoselov, K. S. ;
Jiang, D. ;
Yang, R. ;
Booth, T. J. ;
Geim, A. K. .
APPLIED PHYSICS LETTERS, 2007, 91 (06)
[9]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[10]   Temperature-dependent transport in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Hone, J. ;
Stormer, H. L. ;
Kim, P. .
PHYSICAL REVIEW LETTERS, 2008, 101 (09)