Using the Wimley-White Hydrophobicity Scale as a Direct Quantitative Test of Force Fields: The MARTINI Coarse-Grained Model

被引:42
作者
Singh, Gurpreet [1 ]
Tieleman, D. Peter [1 ,2 ]
机构
[1] Univ Calgary, Dept Biol Sci, Calgary, AB T2N 1N4, Canada
[2] Univ Calgary, Inst Biocomplex & Informat, Calgary, AB T2N 1N4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
SIDE-CHAIN ANALOGS; FREE-ENERGY CALCULATIONS; MOLECULAR-DYNAMICS; COMPUTER-SIMULATIONS; SOLVATION; PROTEINS; PENTAPEPTIDES; ORIENTATION; TRYPTOPHAN; INTERFACES;
D O I
10.1021/ct2002623
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The partitioning of proteins and peptides at the membrane/water interface is a key step in many processes, including the action of antimicrobial peptides, cell-penetrating peptides, and toxins, as well as signaling. To develop a computational model that can be used to accurately represent such systems, the underlying model must be able to quantitatively represent the partitioning preferences of amino acids in the lipid membrane. The MARTINI model provides a consistent set of parameters for building coarse-grained models of systems involving lipids and proteins. Even though MARTINI is parametrized to reproduce the partitioning behavior of small molecules, its ability to reproduce partitioning preferences of amino acids at lipid/water interfaces has never been tested. In this study, we measured the partitioning free energies of side chains of amino acids using alchemical simulations and umbrella sampling. The pentapeptides of sequence Ac-WLXLL were simulated at the POPC/water and cyclohexane/water interfaces using MARTINI, and the computed free energies were compared with the Wimley-White hydrophobicity scale. The free energy values obtained using the free energy perturbation, thermodynamic integration, and umbrella sampling methods were compared to gain insight into the most efficient method and the degree of sampling required to obtain statistically accurate free energies for use with atomistic force fields in future work. With the standard MARTINI water model, the amino acids D, E, K, and R were found to be significantly too favorable in hydrophobic environments, whereas with the polarizable water model, the amino acids D, E, K, and R were found to give correct free energies of partitioning. The amino acids P and F showed significant deviations from the experimental values. This model system will be used in future improvements to the MARTINI model.
引用
收藏
页码:2316 / 2324
页数:9
相关论文
共 51 条
[1]  
Aliste Marcela P., 2005, BMC Biochemistry, V6, DOI 10.1186/1471-2091-6-30
[2]   Molecular dynamics simulations of pentapeptides at interfaces:: Salt bridge and cation-π interactions [J].
Aliste, MP ;
MacCallum, JL ;
Tieleman, DP .
BIOCHEMISTRY, 2003, 42 (30) :8976-8987
[3]   The molecular mechanism of lipid monolayer collapse [J].
Baoukina, Svetlana ;
Monticelli, Luca ;
Risselada, H. Jelger ;
Marrink, Siewert J. ;
Tieleman, D. Peter .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (31) :10803-10808
[4]   Direct Simulation of Protein-Mediated Vesicle Fusion: Lung Surfactant Protein B [J].
Baoukina, Svetlana ;
Tieleman, D. Peter .
BIOPHYSICAL JOURNAL, 2010, 99 (07) :2134-2142
[5]   THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS [J].
BERENDSEN, HJC ;
GRIGERA, JR ;
STRAATSMA, TP .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (24) :6269-6271
[6]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[7]   Direct calculation of the binding free energies of FKBP ligands [J].
Fujitani, H ;
Tanida, Y ;
Ito, M ;
Jayachandran, G ;
Snow, CD ;
Shirts, MR ;
Sorin, EJ ;
Pande, VS .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (08)
[8]   Peptide folding simulations [J].
Gnanakaran, S ;
Nymeyer, H ;
Portman, J ;
Sanbonmatsu, KY ;
García, AE .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2003, 13 (02) :168-174
[9]   Determining the shear viscosity of model liquids from molecular dynamics simulations [J].
Hess, B .
JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (01) :209-217
[10]   GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation [J].
Hess, Berk ;
Kutzner, Carsten ;
van der Spoel, David ;
Lindahl, Erik .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2008, 4 (03) :435-447