Cell death and long-term maintenance of neuron-like state after differentiation of rat bone marrow stromal cells: a comparison of protocols

被引:76
作者
Rismanchi, N [1 ]
Floyd, CL [1 ]
Berman, RF [1 ]
Lyeth, BG [1 ]
机构
[1] Univ Calif Davis, Dept Neurol Surg, Davis, CA 95616 USA
关键词
differentiation; neuron; astrocyte; NeuN; GFAP; cell death;
D O I
10.1016/j.brainres.2003.07.004
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Recent literature suggests that bone marrow stromal cells (BMSCs) may be differentiated into neuron-like and/or glia-like cells, implying that differentiated BMSCs may have potential use in cell replacement therapy for central nervous system disorders. However, many questions remain concerning the nature of BMSCs differentiated to express CNS antigens. For example, how long after differentiation do cells express CNS markers, and do differentiation procedures alter cell viability? This study compared neuronal differentiation methods in sister cell preparations, evaluating cell death and maintenance of the CNS antigen positivity after the Deng or Woodbury methods. Rat BMSCs were harvested, passaged, differentiated, placed in growth or maintenance media, and processed for cell viability or immunocytochemistry for NeuN and GFAP post-differentiation. We report that the Woodbury differentiation protocol produced maximally 51% neuron-like cells, yet also produced significant cell death. The Deng differentiation method produced 13% neuron-like cells and without marked cell death. No significant increases in GFAP immunoreactivity (IR) were seen after differentiation by either protocol. Following both protocols, removal of cells from the maintenance media significantly decreased expression of NeuN. Thus, differentiation procedures may be substantially affected BMSC potential, and maintenance of immunoreactivity to neuronal antigens was dependent on specific, nonphysiological environmental conditions. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:46 / 55
页数:10
相关论文
共 33 条
[1]  
Akiyama Y, 2002, J NEUROSCI, V22, P6623
[2]  
ASHTON BA, 1980, CLIN ORTHOP RELAT R, P294
[3]   Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats - similarities to astrocyte grafts [J].
Azizi, SA ;
Stokes, D ;
Augelli, BJ ;
DiGirolamo, C ;
Prockop, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (07) :3908-3913
[4]   Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats [J].
Chen, JL ;
Li, Y ;
Wang, L ;
Zhang, ZG ;
Lu, DY ;
Lu, M ;
Chopp, M .
STROKE, 2001, 32 (04) :1005-1011
[5]   Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats [J].
Chen, JL ;
Li, Y ;
Wang, L ;
Lu, M ;
Zhang, XH ;
Chopp, M .
JOURNAL OF THE NEUROLOGICAL SCIENCES, 2001, 189 (1-2) :49-57
[6]   Spinal cord injury in rat: treatment with bone marrow stromal cell transplantation [J].
Chopp, M ;
Zhang, XH ;
Li, Y ;
Wang, L ;
Chen, JL ;
Lu, DY ;
Lu, M ;
Rosenblum, M .
NEUROREPORT, 2000, 11 (13) :3001-3005
[7]   Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow [J].
Colter, DC ;
Class, R ;
DiGirolamo, CM ;
Prockop, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (07) :3213-3218
[8]   Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells [J].
Colter, DC ;
Sekiya, I ;
Prockop, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (14) :7841-7845
[9]   In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP [J].
Deng, WW ;
Obrocka, M ;
Fischer, I ;
Prockop, DJ .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2001, 282 (01) :148-152
[10]   Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells [J].
Dezawa, M ;
Takahashi, I ;
Esaki, M ;
Takano, M ;
Sawada, H .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2001, 14 (11) :1771-1776