Quantitative Computed Tomographic Descriptors Associate Tumor Shape Complexity and Intratumor Heterogeneity with Prognosis in Lung Adenocarcinoma

被引:200
作者
Grove, Olya [1 ]
Berglund, Anders E. [2 ]
Schabath, Matthew B. [3 ]
Aerts, Hugo J. W. L. [7 ,8 ]
Dekker, Andre [5 ]
Wang, Hua [1 ,6 ]
Velazquez, Emmanuel Rios [7 ]
Lambin, Philippe [5 ]
Gu, Yuhua [1 ]
Balagurunathan, Yoganand [1 ]
Eikman, Edward [4 ]
Gatenby, Robert A. [1 ,4 ]
Eschrich, Steven [2 ]
Gillies, Robert J. [1 ,4 ]
机构
[1] H Lee Moffitt Canc Ctr & Res Inst, Dept Canc Imaging & Metab, Tampa, FL 33612 USA
[2] H Lee Moffitt Canc Ctr & Res Inst, Dept Biomed Informat, Tampa, FL USA
[3] H Lee Moffitt Canc Ctr & Res Inst, Dept Canc Epidemiol, Tampa, FL USA
[4] H Lee Moffitt Canc Ctr & Res Inst, Dept Radiol, Tampa, FL USA
[5] Maastricht Univ, Res Inst GROW, MAASTRO Clin, Dept Radiat Oncol, NL-6229 ET Maastricht, Netherlands
[6] Tianjin Med Univ, Key Lab Canc Prevent & Therapy, Canc Inst & Hosp, Dept Radiol,Natl Clin Res Ctr Canc, Tianjin, Peoples R China
[7] Harvard Univ, Sch Med, Brigham & Womens Hosp, Dept Radiat Oncol,Dana Farber Canc Inst, Boston, MA USA
[8] Harvard Univ, Sch Med, Brigham & Womens Hosp, Dept Radiol, Boston, MA USA
来源
PLOS ONE | 2015年 / 10卷 / 03期
关键词
TEXTURE ANALYSIS; POTENTIAL MARKER; CT IMAGES; CANCER; MUTATIONS;
D O I
10.1371/journal.pone.0118261
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Two CT features were developed to quantitatively describe lung adenocarcinomas by scoring tumor shape complexity (feature 1: convexity) and intratumor density variation (feature 2: entropy ratio) in routinely obtained diagnostic CT scans. The developed quantitative features were analyzed in two independent cohorts (cohort 1: n = 61; cohort 2: n = 47) of patients diagnosed with primary lung adenocarcinoma, retrospectively curated to include imaging and clinical data. Preoperative chest CTs were segmented semi-automatically. Segmented tumor regions were further subdivided into core and boundary sub-regions, to quantify intensity variations across the tumor. Reproducibility of the features was evaluated in an independent test-retest dataset of 32 patients. The proposed metrics showed high degree of reproducibility in a repeated experiment (concordance, CCC >= 0.897; dynamic range, DR >= 0.92). Association with overall survival was evaluated by Cox proportional hazard regression, Kaplan-Meier survival curves, and the log-rank test. Both features were associated with overall survival (convexity: p = 0.008; entropy ratio: p = 0.04) in Cohort 1 but not in Cohort 2 (convexity: p = 0.7; entropy ratio: p = 0.8). In both cohorts, these features were found to be descriptive and demonstrated the link between imaging characteristics and patient survival in lung adenocarcinoma.
引用
收藏
页数:14
相关论文
共 28 条
[1]   Reproducibility and Prognosis of Quantitative Features Extracted from CT Images [J].
Balagurunathan, Yoganand ;
Gu, Yuhua ;
Wang, Hua ;
Kumar, Virendra ;
Grove, Olya ;
Hawkins, Sam ;
Kim, Jongphil ;
Goldgof, Dmitry B. ;
Hall, Lawrence O. ;
Gatenby, Robert A. ;
Gillies, Robert J. .
TRANSLATIONAL ONCOLOGY, 2014, 7 (01) :72-87
[2]   The Quickhull algorithm for convex hulls [J].
Barber, CB ;
Dobkin, DP ;
Huhdanpaa, H .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1996, 22 (04) :469-483
[3]   Identification of noninvasive imaging surrogates for brain tumor gene-expression modules [J].
Diehn, Maximilian ;
Nardini, Christine ;
Wang, David S. ;
McGovern, Susan ;
Jayaraman, Mahesh ;
Liang, Yu ;
Alclape, Kenneth ;
Cha, Soonmee ;
Kuo, Michael D. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (13) :5213-5218
[4]   Somatic mutations affect key pathways in lung adenocarcinoma [J].
Ding, Li ;
Getz, Gad ;
Wheeler, David A. ;
Mardis, Elaine R. ;
McLellan, Michael D. ;
Cibulskis, Kristian ;
Sougnez, Carrie ;
Greulich, Heidi ;
Muzny, Donna M. ;
Morgan, Margaret B. ;
Fulton, Lucinda ;
Fulton, Robert S. ;
Zhang, Qunyuan ;
Wendl, Michael C. ;
Lawrence, Michael S. ;
Larson, David E. ;
Chen, Ken ;
Dooling, David J. ;
Sabo, Aniko ;
Hawes, Alicia C. ;
Shen, Hua ;
Jhangiani, Shalini N. ;
Lewis, Lora R. ;
Hall, Otis ;
Zhu, Yiming ;
Mathew, Tittu ;
Ren, Yanru ;
Yao, Jiqiang ;
Scherer, Steven E. ;
Clerc, Kerstin ;
Metcalf, Ginger A. ;
Ng, Brian ;
Milosavljevic, Aleksandar ;
Gonzalez-Garay, Manuel L. ;
Osborne, John R. ;
Meyer, Rick ;
Shi, Xiaoqi ;
Tang, Yuzhu ;
Koboldt, Daniel C. ;
Lin, Ling ;
Abbott, Rachel ;
Miner, Tracie L. ;
Pohl, Craig ;
Fewell, Ginger ;
Haipek, Carrie ;
Schmidt, Heather ;
Dunford-Shore, Brian H. ;
Kraja, Aldi ;
Crosby, Seth D. ;
Sawyer, Christopher S. .
NATURE, 2008, 455 (7216) :1069-1075
[5]   Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival [J].
Ganeshan, Balaji ;
Panayiotou, Elleny ;
Burnand, Kate ;
Dizdarevic, Sabina ;
Miles, Ken .
EUROPEAN RADIOLOGY, 2012, 22 (04) :796-802
[6]   Quantitative Imaging in Cancer Evolution and Ecology [J].
Gatenby, Robert A. ;
Grove, Olya ;
Gillies, Robert J. .
RADIOLOGY, 2013, 269 (01) :8-15
[7]   Non-Small Cell Lung Cancer: Identifying Prognostic Imaging Biomarkers by Leveraging Public Gene Expression Microarray Data-Methods and Preliminary Results [J].
Gevaert, Olivier ;
Xu, Jiajing ;
Hoang, Chuong D. ;
Leung, Ann N. ;
Xu, Yue ;
Quon, Andrew ;
Rubin, Daniel L. ;
Napel, Sandy ;
Plevritis, Sylvia K. .
RADIOLOGY, 2012, 264 (02) :387-396
[8]   Automated delineation of lung tumors from CT images using a single click ensemble segmentation approach [J].
Gu, Yuhua ;
Kumar, Virendra ;
Hall, Lawrence O. ;
Goldgof, Dmitry B. ;
Li, Ching-Yen ;
Korn, Rene ;
Bendtsen, Claus ;
Velazquez, Emmanuel Rios ;
Dekker, Andre ;
Aerts, Hugo ;
Lambin, Philippe ;
Li, Xiuli ;
Tian, Jie ;
Gatenby, Robert A. ;
Gillies, Robert J. .
PATTERN RECOGNITION, 2013, 46 (03) :692-702
[9]   Radiographic and pathological analysis of small lung adenocarcinoma using the new IASLC classification [J].
Honda, T. ;
Kondo, T. ;
Murakami, S. ;
Saito, H. ;
Oshita, F. ;
Ito, H. ;
Tsuboi, M. ;
Nakayama, H. ;
Yokose, T. ;
Kameda, Y. ;
Isobe, T. ;
Yamada, K. .
CLINICAL RADIOLOGY, 2013, 68 (01) :E21-E26
[10]   Imaging and Genomics: Is There a Synergy? [J].
Jaffe, C. Carl .
RADIOLOGY, 2012, 264 (02) :329-331