Growth of (110) diamond using pure dicarbon

被引:18
作者
Sternberg, M [1 ]
Kaukonen, M
Nieminen, RM
Frauenheim, T
机构
[1] Univ Gesamthsch Paderborn, Dept Phys, D-33098 Paderborn, Germany
[2] Helsinki Univ Technol, Phys Lab, FIN-02015 Helsinki, Finland
来源
PHYSICAL REVIEW B | 2001年 / 63卷 / 16期
关键词
D O I
10.1103/PhysRevB.63.165414
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We use a density-functional-based tight-binding method to study diamond growth steps by depositing dicarbon species onto a hydrogen-free diamond (110) surface. Subsequent C-2 molecules are deposited on an initially clean surface, in the vicinity of a growing adsorbate cluster, and finally near vacancies just before completion of a full new monolayer. The preferred growth stages arise from C-2n clusters in near ideal lattice positions forming zigzag chains running along the [(1$) over bar 10] direction parallel to the surface. The adsorption energies are consistently exothermic by 8-10 eV per C-2, depending on the size of the cluster. The deposition barriers for these processes are in the range of 0.0-0.6 eV. For deposition sites above C-2n clusters the adsorption energies are smaller by 3 eV, but diffusion to more stable positions is feasible. We also perform simulations of the diffusion of C-2 molecules On the surface in the vicinity of existing adsorbate clusters using a constrained conjugate gradient method. We find migration barriers in excess of 3 eV on the clean surface, and 0.6-1.0 eV on top bf graphenelike adsorbates. The barrier heights and pathways indicate that the growth from gaseous dicarbon proceeds either by direct adsorption onto clean sites or after migration on top of the existing C-2n chains.
引用
收藏
页数:9
相关论文
共 31 条
[1]   STRUCTURAL, ELECTRONIC, AND VIBRATIONAL PROPERTIES OF DIAMOND(100), DIAMOND(111), AND DIAMOND(110) SURFACES FROM AB-INITIO CALCULATIONS [J].
ALFONSO, DR ;
DRABOLD, DA ;
ULLOA, SE .
PHYSICAL REVIEW B, 1995, 51 (20) :14669-14685
[2]  
Busmann HG, 1998, EUR MAT RES, V68, P529
[3]   GROWTH-KINETICS OF (100), (110), AND (111) HOMOEPITAXIAL DIAMOND FILMS [J].
CHU, CJ ;
HAUGE, RH ;
MARGRAVE, JL ;
DEVELYN, MP .
APPLIED PHYSICS LETTERS, 1992, 61 (12) :1393-1395
[4]   MOLECULAR-DYNAMICS OF RIGID SYSTEMS IN CARTESIAN COORDINATES A GENERAL FORMULATION [J].
CICCOTTI, G ;
FERRARIO, M ;
RYCKAERT, JP .
MOLECULAR PHYSICS, 1982, 47 (06) :1253-1264
[5]   TIGHT-BINDING STUDY OF HYDROGEN ON THE C(111), C(100), AND C(110) DIAMOND SURFACES [J].
DAVIDSON, BN ;
PICKETT, WE .
PHYSICAL REVIEW B, 1994, 49 (16) :11253-11267
[6]   Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties [J].
Elstner, M ;
Porezag, D ;
Jungnickel, G ;
Elsner, J ;
Haugk, M ;
Frauenheim, T ;
Suhai, S ;
Seifert, G .
PHYSICAL REVIEW B, 1998, 58 (11) :7260-7268
[7]  
Erdemir A, 1996, DIAMOND FILM TECHNOL, V6, P31
[8]   Friction and wear mechanisms of smooth diamond films during sliding in air and dry nitrogen [J].
Erdemir, A ;
Halter, M ;
Fenske, GR ;
Zuiker, C ;
Csencsits, R ;
Krauss, AR ;
Gruen, DM .
TRIBOLOGY TRANSACTIONS, 1997, 40 (04) :667-675
[9]   A molecular dynamics study of N-incorporation into carbon systems: doping, diamond growth and nitride formation [J].
Frauenheim, T ;
Jungnickel, G ;
Sitch, P ;
Kaukonen, M ;
Weich, F ;
Widany, J ;
Porezag, D .
DIAMOND AND RELATED MATERIALS, 1998, 7 (2-5) :348-355
[10]   C2 column densities in H2/Ar/CH4 microwave plasmas [J].
Goyette, AN ;
Matsuda, Y ;
Anderson, LW ;
Lawler, JE .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1998, 16 (01) :337-340