Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion

被引:748
作者
Wolf, Katarina
Wu, Yi I.
Liu, Yueying
Geiger, Joerg
Tam, Eric
Overall, Christopher
Stack, M. Sharon
Friedl, Peter
机构
[1] Univ Wurzburg, DFG Res Ctr Expt Biomed, Rudolf Virchow Ctr, D-97080 Wurzburg, Germany
[2] Univ Wurzburg, Dept Dermatol, D-97080 Wurzburg, Germany
[3] Northwestern Univ, Feinberg Med Sch, Dept Cell & Mol Biol, Chicago, IL 60611 USA
[4] Univ Wurzburg, Inst Clin Biochem & Pathobiochem, D-97080 Wurzburg, Germany
[5] Univ British Columbia, Dept Biochem & Mol Biol, Vancouver, BC V6T 1Z3, Canada
关键词
D O I
10.1038/ncb1616
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Invasive cell migration through tissue barriers requires pericellular remodelling of extracellular matrix (ECM) executed by cell-surface proteases, particularly membrane-type-1 matrix metalloproteinase (MT1-MMP/MMP-14). Using time-resolved multimodal microscopy, we show how invasive HT-1080 fibrosarcoma and MDA-MB-231 breast cancer cells coordinate mechanotransduction and fibrillar collagen remodelling by segregating the anterior force-generating leading edge containing beta(1) integrin, MT1-MMP and F-actin from a posterior proteolytic zone executing fibre breakdown. During forward movement, sterically impeding fibres are selectively realigned into microtracks of single-cell calibre. Microtracks become expanded by multiple following cells by means of the large-scale degradation of lateral ECM interfaces, ultimately prompting transition towards collective invasion similar to that in vivo. Both ECM track widening and transition to multicellular invasion are dependent on MT1-MMP-mediated collagenolysis, shown by broad-spectrum protease inhibition and RNA interference. Thus, invasive migration and proteolytic ECM remodelling are interdependent processes that control tissue micropatterning and macropatterning and, consequently, individual and collective cell migration.
引用
收藏
页码:893 / U39
页数:21
相关论文
共 51 条
[11]  
Deryugina EI, 1997, ANTICANCER RES, V17, P3201
[12]   New functions for the matrix metalloproteinases in cancer progression [J].
Egeblad, M ;
Werb, Z .
NATURE REVIEWS CANCER, 2002, 2 (03) :161-174
[13]   Functional interplay between type I collagen and cell surface matrix metalloproteinase activity [J].
Ellerbroek, SM ;
Wu, YI ;
Overall, CM ;
Stack, MS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (27) :24833-24842
[14]  
Filla Michael B, 2004, Birth Defects Res C Embryo Today, V72, P267, DOI 10.1002/bdrc.20020
[15]   Tumour-cell invasion and migration: Diversity and escape mechanisms [J].
Friedl, P ;
Wolf, K .
NATURE REVIEWS CANCER, 2003, 3 (05) :362-374
[16]   Formation of extracellular matrix-digesting invadopodia by primary aortic smooth muscle cells [J].
Furmaniak-Kazmierczak, Emilia ;
Crawley, Scott W. ;
Carter, Rhonda L. ;
Maurice, Donald H. ;
Cote, Graham P. .
CIRCULATION RESEARCH, 2007, 100 (09) :1328-1336
[17]   ECM regulates MT1-MMP localization with β1 or αvβ3 integrins at distinct cell compartments modulating its internalization and activity on human endothelial cells [J].
Gálvez, BG ;
Matías-Román, S ;
Yáñez-Mó, M ;
Sánchez-Madrid, F ;
Arroyo, AG .
JOURNAL OF CELL BIOLOGY, 2002, 159 (03) :509-521
[18]   Chemokine signaling mediates self-organizing tissue migration in the zebrafish lateral line [J].
Haas, Petra ;
Gilmour, Darren .
DEVELOPMENTAL CELL, 2006, 10 (05) :673-680
[19]  
Hegerfeldt Y, 2002, CANCER RES, V62, P2125
[20]   Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins [J].
Hiraoka, N ;
Allen, E ;
Apel, IJ ;
Gyetko, MR ;
Weiss, SJ .
CELL, 1998, 95 (03) :365-377