Brain-derived neurotrophic factor mRNA levels are up-regulated in hindlimb skeletal muscle of diabetic rats: Effect of denervation

被引:16
作者
Fernyhough, P
Maeda, K
Tomlinson, DR
机构
[1] Department of Pharmacology, Queen Mary and Westfield College, University of London
[2] Third Department of Medicine, Shiga University of Medical Science, Otsu
基金
英国惠康基金;
关键词
D O I
10.1006/exnr.1996.0164
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In a previous study the levels of brain-derived neurotrophic factor (BDNF) mRNA were shown to be elevated in skeletal muscle of the diabetic rat compared with age-matched control animals. It was proposed that diabetes-induced changes in nerve function may initiate changes in nerve/muscle contact akin to those following denervation of target skeletal muscle, In this study hindlimb skeletal muscles were denervated by sciatic nerve crush or transection and the effect on BDNF mRNA levels in control and diabetic rats was observed using Northern blotting. Contralateral to the side of nerve injury, the levels of BDNF mRNA in soleus muscle of diabetic rats were higher than in controls (three- to sevenfold), as has been seen previously in diabetic rats without any axotomy. Sciatic nerve crush or transection, of 1 week or of 3 weeks duration, lowered the levels of BDNF mRNA by 50% in ipsilateral soleus muscle of diabetic rats. BDNF mRNA levels in contralateral gastrocnemius muscle were not similarly raised in diabetic rats compared with controls and nerve injury had no effect. In control animals, ipsilaterally, the BDNF mRNA levels of soleus muscle were raised approximately twofold at 1 week and were lowered by approximately 50% at 3 weeks following nerve injury, Neurotrophin-3 mRNA levels were reduced approximately 50% in soleus muscle of diabetic rats compared with control rats, and nerve injury had no significant effect. The specific up-regulation of BDNF mRNA in soleus muscle of diabetic rats is discussed in terms of a proposed diabetes-induced ischemia within hindlimb skeletal muscle, with a protective role for BDNF in muscle and/or nerve being introduced. (C) 1996 Academic Press, Inc.
引用
收藏
页码:297 / 303
页数:7
相关论文
共 31 条
[1]  
ABUSHAKRA S, 1995, SOC NEUR 25 ANN M
[2]   NERVE GROWTH-FACTOR SUPPORTS GROWTH OF RAT SKELETAL MYOTUBES IN CULTURE [J].
BRODIE, C ;
SAMPSON, SR .
BRAIN RESEARCH, 1987, 435 (1-2) :393-397
[3]   SINGLE-STEP METHOD OF RNA ISOLATION BY ACID GUANIDINIUM THIOCYANATE PHENOL CHLOROFORM EXTRACTION [J].
CHOMCZYNSKI, P ;
SACCHI, N .
ANALYTICAL BIOCHEMISTRY, 1987, 162 (01) :156-159
[4]  
Delaporte C, 1987, Adv Exp Med Biol, V209, P15
[5]   THE ROCHESTER DIABETIC NEUROPATHY STUDY - REASSESSMENT OF TESTS AND CRITERIA FOR DIAGNOSIS AND STAGED SEVERITY [J].
DYCK, PJ ;
KARNES, JL ;
OBRIEN, PC ;
LITCHY, WJ ;
LOW, PA ;
MELTON, LJ .
NEUROLOGY, 1992, 42 (06) :1164-1170
[6]   IMPAIRED NERVE REGENERATION IN STREPTOZOTOCIN-DIABETIC RATS - EFFECTS OF TREATMENT WITH AN ALDOSE REDUCTASE INHIBITOR [J].
EKSTROM, PAR ;
TOMLINSON, DR .
JOURNAL OF THE NEUROLOGICAL SCIENCES, 1989, 93 (2-3) :231-237
[7]   NERVE CONDUCTION CHANGES IN EXPERIMENTAL DIABETES [J].
ELIASSON, SG .
JOURNAL OF CLINICAL INVESTIGATION, 1964, 43 (12) :2353-+
[8]   DEFICITS IN SCIATIC-NERVE NEUROPEPTIDE CONTENT COINCIDE WITH A REDUCTION IN TARGET TISSUE NERVE GROWTH-FACTOR MESSENGER-RNA IN STREPTOZOTOCIN-DIABETIC RATS - EFFECTS OF INSULIN-TREATMENT [J].
FERNYHOUGH, P ;
DIEMEL, LT ;
BREWSTER, WJ ;
TOMLINSON, DR .
NEUROSCIENCE, 1994, 62 (02) :337-344
[9]   HUMAN RECOMBINANT NERVE GROWTH-FACTOR REPLACES DEFICIENT NEUROTROPHIC SUPPORT IN THE DIABETIC RAT [J].
FERNYHOUGH, P ;
DIEMEL, LT ;
HARDY, J ;
BREWSTER, WJ ;
MOHIUDDIN, L ;
TOMLINSON, DR .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1995, 7 (05) :1107-1110
[10]  
FERNYHOUGH P, 1995, NEUROSCIENCE, V64, P1231