Analysis on macroscopic equation to one-dimensional random traffic flow models

被引:17
作者
Lü, XY
Kong, LJ
Liu, MR
机构
[1] S China Normal Univ, Publ Adm Inst, Guangzhou 510631, Peoples R China
[2] Guangxi Normal Univ, Dept Phys & Elect Sci, Guilin 541004, Peoples R China
关键词
cellular automation; traffic flow; Burgers equation; shock wave;
D O I
10.7498/aps.50.1255
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By introducing a break noise,create and disappear probability,we obtain a wholly stochastic cellular automaton traffic model. Through studying its microscopic evolution rule,we build its macroscopic dynamical equation under the Boltzmann approximation. We analyzed the solution of the equation under special conditions and did some computer simulation experiments.
引用
收藏
页码:1255 / 1259
页数:5
相关论文
共 8 条
[1]   Statistical physics of vehicular traffic and some related systems [J].
Chowdhury, D ;
Santen, L ;
Schadschneider, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 329 (4-6) :199-329
[2]  
JIANG LS, 1997, LECT PARTIAL DIFFERE
[3]   EMERGENT TRAFFIC JAMS [J].
NAGEL, K ;
PACZUSKI, M .
PHYSICAL REVIEW E, 1995, 51 (04) :2909-2918
[4]  
NAGEL K, 1992, J PHYS I, V2, P2221, DOI 10.1051/jp1:1992277
[5]   DISCRETE STOCHASTIC-MODELS FOR TRAFFIC FLOW [J].
SCHRECKENBERG, M ;
SCHADSCHNEIDER, A ;
NAGEL, K ;
ITO, N .
PHYSICAL REVIEW E, 1995, 51 (04) :2939-2949
[6]  
Su M.D., 1997, COMPUTATIONAL FLUID
[7]  
WANG BH, 1998, ACTA PHYS SINICA, V47, P906
[8]  
吕晓阳, 1998, 物理学报, V47, P1761