Ethylene directs auxin to control root cell expansion

被引:143
作者
Strader, Lucia C. [1 ]
Chen, Grace L. [1 ]
Bartel, Bonnie [1 ]
机构
[1] Rice Univ, Dept Biochem & Cell Biol, Houston, TX 77005 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
auxin; cell elongation; ethylene; hormone crosstalk; root hair; F-BOX PROTEINS; ARABIDOPSIS-THALIANA; HAIR DEVELOPMENT; LATERAL ROOT; INDOLE-3-BUTYRIC ACID; RESISTANT MUTANTS; UBIQUITIN LIGASES; PLANT DEVELOPMENT; RESPONSE PATHWAY; GENETIC-ANALYSIS;
D O I
10.1111/j.1365-313X.2010.04373.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
P>Root morphogenesis is controlled by the regulation of cell division and expansion. We isolated an allele of the eto1 ethylene overproducer as a suppressor of the auxin-resistant mutant ibr5, prompting an examination of crosstalk between the phytohormones auxin and ethylene in control of root epidermal cell elongation and root hair elongation. We examined the interaction of eto1 with mutants that have reduced auxin response or transport and found that ethylene overproduction partially restored auxin responsiveness to these mutants. In addition, we found that the effects of endogenous ethylene on root cell expansion in eto1 seedlings were partially impeded by dampening auxin signaling, and were fully suppressed by blocking auxin influx. These data provide insight into the interaction between these two key plant hormones, and suggest that endogenous ethylene directs auxin to control root cell expansion.
引用
收藏
页码:874 / 884
页数:11
相关论文
共 64 条
[1]   EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis [J].
Alonso, JM ;
Hirayama, T ;
Roman, G ;
Nourizadeh, S ;
Ecker, JR .
SCIENCE, 1999, 284 (5423) :2148-2152
[2]   Arabidopsis AUX1 gene: A permease-like regulator of root gravitropism [J].
Bennett, MJ ;
Marchant, A ;
Green, HG ;
May, ST ;
Ward, SP ;
Millner, PA ;
Walker, AR ;
Schulz, B ;
Feldmann, KA .
SCIENCE, 1996, 273 (5277) :948-950
[3]   Related to ubiquitin 1 and 2 are redundant and essential and regulate vegetative growth, auxin signaling, and ethylene production in Arabidopsis [J].
Bostick, M ;
Lochhead, SR ;
Honda, A ;
Palmer, S ;
Callis, J .
PLANT CELL, 2004, 16 (09) :2418-2432
[4]  
Cernac A, 1997, DEVELOPMENT, V124, P1583
[5]   Eto Brute?: Role of ACS turnover in regulating ethylene biosynthesis [J].
Chae, HS ;
Kieber, JJ .
TRENDS IN PLANT SCIENCE, 2005, 10 (06) :291-296
[6]   The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein [J].
Chae, HS ;
Faure, F ;
Kieber, JJ .
PLANT CELL, 2003, 15 (02) :545-559
[7]   Regulation of root hair initiation and expansin gene expression in Arabidopsis [J].
Cho, HT ;
Cosgrove, DJ .
PLANT CELL, 2002, 14 (12) :3237-3253
[8]   P-glycoprotein4 displays auxin efflux transporter-like action in Arabidopsis root hair cells and tobacco cells [J].
Cho, Misuk ;
Lee, Sang Ho ;
Cho, Hyung-Taeg .
PLANT CELL, 2007, 19 (12) :3930-3943
[9]   The BTB ubiquitin ligases ETO1, EOL1 and EOL2 act collectively to regulate ethylene biosynthesis in Arabidopsis by controlling type-2 ACC synthase levels [J].
Christians, Matthew J. ;
Gingerich, Derek J. ;
Hansen, Maureen ;
Binder, Brad M. ;
Kieber, Joseph J. ;
Vierstra, Richard D. .
PLANT JOURNAL, 2009, 57 (02) :332-345
[10]   ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins [J].
de Castro, Edouard ;
Sigrist, Christian J. A. ;
Gattiker, Alexandre ;
Bulliard, Virginie ;
Langendijk-Genevaux, Petra S. ;
Gasteiger, Elisabeth ;
Bairoch, Amos ;
Hulo, Nicolas .
NUCLEIC ACIDS RESEARCH, 2006, 34 :W362-W365