Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-γ-DL-glutamic acid production and biofilm formation

被引:203
作者
Stanley, NR [1 ]
Lazazzera, BA [1 ]
机构
[1] Univ Calif Los Angeles, Dept Microbiol Immunol & Mol Genet, Los Angeles, CA 90095 USA
关键词
D O I
10.1111/j.1365-2958.2005.04746.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Biofilms are communities of microbial cells that are encased in a self-produced, polymeric matrix and are adherent to a surface. For several species of bacteria, an enhanced ability to form biofilms has been linked with an increased capability to produce exopolymers. To identify exopolymers of Bacillus subtilis that can contribute to biofilm formation, we transferred the genetic determinants that control exopolymer production from a wild, exopolymer-positive strain to a domesticated, exopolymer-negative strain. Mapping these genetic determinants led to the identification of gamma-poly-DL-glutamic acid (gamma-PGA) as an exopolymer that increases biofilm formation, possibly through enhancing cell-surface interactions. Production of gamma-PGA by Bacillus subtilis was known to be dependent on the two-component regulator ComPA; this study highlighted the additional dependence on the DegS-DegU, DegQ and SwrA regulator proteins. The inability of the domestic strain of B. subtilis to produce gamma-PGA was mapped to two base pairs; a single base pair change in the promoter region of degQ and a single base pair insertion in the coding region of swrA. Introduction of alleles of degQ and swrA from the wild strain into the domestic strain was sufficient to allow gamma-PGA production. In addition to controlling gamma-PGA production, ComPA and DegSU were also shown to activate biofilm formation through an as yet undefined pathway. The identification of these regulators as affecting gamma-PGA production and biofilm formation suggests that these processes are regulated by osmolarity, high cell density and phase variation.
引用
收藏
页码:1143 / 1158
页数:16
相关论文
共 50 条
[1]   A poly-γ-glutamate synthetic system of Bacillus subtilis IFO 3336:: Gene cloning and biochemical analysis of poly-γ-glutamate produced by Escherichia coli clone cells [J].
Ashiuchi, M ;
Soda, K ;
Misono, H .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1999, 263 (01) :6-12
[2]   Biochemistry and molecular genetics of poly-γ-glutamate synthesis [J].
Ashiuchi, M ;
Misono, H .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2002, 59 (01) :9-14
[3]   Biological control of Fusarium moniliforme in maize [J].
Bacon, CW ;
Yates, IE ;
Hinton, DM ;
Meredith, F .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2001, 109 :325-332
[4]  
Bai YM, 2002, CAN J MICROBIOL, V48, P230, DOI [10.1139/w02-014, 10.1139/W02-014]
[5]   Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production [J].
Bais, HP ;
Fall, R ;
Vivanco, JM .
PLANT PHYSIOLOGY, 2004, 134 (01) :307-319
[6]   Biofilms:: the matrix revisited [J].
Branda, SS ;
Vik, Å ;
Friedman, L ;
Kolter, R .
TRENDS IN MICROBIOLOGY, 2005, 13 (01) :20-26
[7]   Fruiting body formation by Bacillus subtilis [J].
Branda, SS ;
González-Pastor, JE ;
Ben-Yehuda, S ;
Losick, R ;
Kolter, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (20) :11621-11626
[8]   SadB is required for the transition from reversible to irreversible attachment during biofilm formation by Pseudomonas aeruginosa PA14 [J].
Caiazza, NC ;
O'Toole, GA .
JOURNAL OF BACTERIOLOGY, 2004, 186 (14) :4476-4485
[9]   MICROBIAL BIOFILMS [J].
COSTERTON, JW ;
LEWANDOWSKI, Z ;
CALDWELL, DE ;
KORBER, DR ;
LAPPINSCOTT, HM .
ANNUAL REVIEW OF MICROBIOLOGY, 1995, 49 :711-745
[10]  
Emmert EAB, 1999, FEMS MICROBIOL LETT, V171, P1, DOI 10.1111/j.1574-6968.1999.tb13405.x