Cost-Effective Scalable Synthesis of Mesoporous Germanium Particles via a Redox-Transmetalation Reaction for High-Performance Energy Storage Devices

被引:63
作者
Choi, Sinho [1 ]
Kim, Jieun [1 ]
Choi, Nam-Soon [1 ]
Kim, Min Gyu [2 ]
Park, Soojin [1 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Sch Energy & Chem Engn, Dept Energy Engn, Ulsan 689798, South Korea
[2] Pohang Univ Sci & Technol, Pohang Accelerator Lab, Beamline Res Div, Pohang 790784, South Korea
关键词
mesoporous germanium; redox-transmetalation; zincothermic reduction; germanium anode; energy storage devices; GE-AT-C; ION-BATTERY ANODES; LITHIUM-ION; HIGH-CAPACITY; NANOWIRE ANODES; ELECTRODES; CHALLENGES; GRAPHENE; SI; NANOSTRUCTURES;
D O I
10.1021/acsnano.5b00389
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanostructured germanium is a promising material for high-performance energy storage devices. However, synthesizing it in a cost-effective and simple manner on a large scale remains a significant challenge. Herein, we report a redox-transmetalation reaction-based route for the large-scale synthesis of mesoporous germanium particles from germanium oxide at temperatures of 420600 degrees C. We could confirm that a unique redox-transmetalation reaction occurs between Zn0 and Ge4+ at approximately 420 degrees C using temperature-dependent in situ X-ray absorption fine structure analysis. This reaction has several advantages, which include (i) the successful synthesis of germanium particles at a low temperature (similar to 450 degrees C), (ii) the accommodation of large volume changes, owing to the mesoporous structure of the germanium particles, and (iii) the ability to synthesize the particles in a cost-effective and scalable manner, as inexpensive metal oxides are used as the starting materials. The optimized mesoporous germanium anode exhibits a reversible capacity of similar to 1400 mA h g(1) after 300 cycles at a rate of 0.5 C (corresponding to the capacity retention of 99.5%), as well as stable cycling in a full cell containing a LiCoO2 cathode with a high energy density (charge capacity = 286.62 mA h cm(3)).
引用
收藏
页码:2203 / 2212
页数:10
相关论文
共 40 条
[1]   High capacity Li ion battery anodes using Ge nanowires [J].
Chan, Candace K. ;
Zhang, Xiao Feng ;
Cui, Yi .
NANO LETTERS, 2008, 8 (01) :307-309
[2]   CO2 Laser irradiation of GeO2 planar waveguide fabricated by rf-sputtering [J].
Chiasera, A. ;
Macchi, C. ;
Mariazzi, S. ;
Valligatla, S. ;
Lunelli, L. ;
Pederzolli, C. ;
Rao, D. N. ;
Somoza, A. ;
Brusa, R. S. ;
Ferrari, M. .
OPTICAL MATERIALS EXPRESS, 2013, 3 (09) :1561-1570
[3]   Solution-Grown Germanium Nanowire Anodes for Lithium-Ion Batteries [J].
Chockla, Aaron M. ;
Klavetter, Kyle C. ;
Mullins, C. Buddie ;
Korgel, Brian A. .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (09) :4658-4664
[4]   Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors [J].
Choi, Nam-Soon ;
Chen, Zonghai ;
Freunberger, Stefan A. ;
Ji, Xiulei ;
Sun, Yang-Kook ;
Amine, Khalil ;
Yushin, Gleb ;
Nazar, Linda F. ;
Cho, Jaephil ;
Bruce, Peter G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (40) :9994-10024
[5]   Crystalline-Amorphous Core-Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes [J].
Cui, Li-Feng ;
Ruffo, Riccardo ;
Chan, Candace K. ;
Peng, Hailin ;
Cui, Yi .
NANO LETTERS, 2009, 9 (01) :491-495
[6]  
Cullity B. D., 1978, ELEMENTS XRAY DIFFRA
[7]   MOBILITY OF IMPURITY IONS IN GERMANIUM AND SILICON [J].
FULLER, CS ;
SEVERIENS, JC .
PHYSICAL REVIEW, 1954, 96 (01) :21-24
[8]   Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities [J].
Graetz, J ;
Ahn, CC ;
Yazami, R ;
Fultz, B .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (05) :A698-A702
[9]   Catalyst-free Direct Growth of a Single to a Few Layers of Graphene on a Germanium Nanowire for the Anode Material of a Lithium Battery [J].
Kim, Hyungki ;
Son, Yoonkook ;
Park, Chibeom ;
Cho, Jaephil ;
Choi, Hee Cheul .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (23) :5997-6001
[10]   Redox-transmetalation process as a generalized synthetic strategy for core-shell magnetic nanoparticles [J].
Lee, WR ;
Kim, MG ;
Choi, JR ;
Park, JI ;
Ko, SJ ;
Oh, SJ ;
Cheon, J .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (46) :16090-16097