Genetic programming for model selection of TSK-fuzzy systems

被引:46
作者
Hoffmann, F [1 ]
Nelles, O
机构
[1] Royal Inst Technol, Ctr Autonomous Syst, SE-10044 Stockholm, Sweden
[2] SIEMENS Automot, AT PT DTS FDC, D-93055 Regensburg, Germany
关键词
fuzzy modeling; genetic programming; neuro-fuzzy system;
D O I
10.1016/S0020-0255(01)00139-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper compares a genetic programming (GP) approach with a greedy partition algorithm (LOLIMOT) for structure identification of local linear neuro-fuzzy models. The crisp linear conclusion part of a Takagi-Sugeno-Kang (TSK) fuzzy rule describes the underlying model in the local region specified in the premise. The objective of structure identification is to identify an optimal partition of the input space into Gaussian, axis-orthogonal fuzzy sets. The linear parameters in the rule consequent are then estimated by means of a local weighted least-squares algorithm. LOLIMOT is an incremental tree-construction algorithm that partitions the input space by axis-orthogonal splits, In each iteration it greedily adds the new model that minimizes the classification error. GP performs a global search for the optimal partition tree and is therefore able to backtrack in case of sub-optimal intermediate split decisions. We compare the performance of both methods for function approximation of a highly nonlinear two-dimensional test function and an engine characteristic map. (C) 2001 Elsevier Science Inc, All rights reserved.
引用
收藏
页码:7 / 28
页数:22
相关论文
共 17 条
[1]  
[Anonymous], INTELLIGENT DATA ANA
[2]  
Atkeson CG, 1997, ARTIF INTELL REV, V11, P75, DOI 10.1023/A:1006511328852
[3]   An overview of fuzzy modeling for control [J].
Babuska, R ;
Verbruggen, HB .
CONTROL ENGINEERING PRACTICE, 1996, 4 (11) :1593-1606
[4]   Identifying fuzzy models utilizing genetic programming [J].
Bastian, A .
FUZZY SETS AND SYSTEMS, 2000, 113 (03) :333-350
[5]  
CORDON O, 1999, IEEE T SYSTEMS MAN C, V29
[6]  
Cordon O., 2001, ADV FUZZY SYSTEMS
[7]  
DELGADO MR, 2001, P N AM FUZZ INF PROC
[8]  
ERNST S, 1998, IEEE C DEC CONTR CDC
[9]  
Goldberg D. E., 1987, Genetic Algorithms and their Applications: Proceedings of the Second International Conference on Genetic Algorithms, P41
[10]   ANFIS - ADAPTIVE-NETWORK-BASED FUZZY INFERENCE SYSTEM [J].
JANG, JSR .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1993, 23 (03) :665-685