Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome

被引:307
作者
Washietl, S
Hofacker, IL
Lukasser, M
Hüttenhofer, A
Stadler, PF
机构
[1] Univ Leipzig, Dept Comp Sci, D-04107 Leipzig, Germany
[2] Univ Leipzig, Interdisciplinary Ctr Bioinformat, D-04107 Leipzig, Germany
[3] Univ Vienna, Inst Theoret Chem, A-1090 Vienna, Austria
[4] Innsbruck Med Univ, Bioctr, Div Genom & RNom, A-6020 Innsbruck, Austria
[5] Santa Fe Inst, Santa Fe, NM 87501 USA
关键词
D O I
10.1038/nbt1144
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In contrast to the fairly reliable and complete annotation of the protein coding genes in the human genome, comparable information is lacking for noncoding RNAs (ncRNAs). We present a comparative screen of vertebrate genomes for structural noncoding RNAs, which evaluates conserved genomic DNA sequences for signatures of structural conservation of base-pairing patterns and exceptional thermodynamic stability. We predict more than 30,000 structured RNA elements in the human genome, almost 1,000 of which are conserved across all vertebrates. Roughly a third are found in introns of known genes, a sixth are potential regulatory elements in untranslated regions of protein-coding mRNAs and about half are located far away from any known gene. Only a small fraction of these sequences has been described previously. A comparison with recent tiling array data shows that more than 40% of the predicted structured RNAs overlap with experimentally detected sites of transcription. The widespread conservation of secondary structure points to a large number of functional ncRNAs and cis-acting mRNA structures in the human genome.
引用
收藏
页码:1383 / 1390
页数:8
相关论文
共 43 条
[1]   A computational search for box C/D snoRNA genes in the Drosophila melanogaster genome [J].
Accardo, MC ;
Giordano, E ;
Riccardo, S ;
Digilio, FA ;
Iazzetti, G ;
Calogero, RA ;
Furia, M .
BIOINFORMATICS, 2004, 20 (18) :3293-3301
[2]   X-chromosome inactivation: Counting, choice and initiation [J].
Avner, P ;
Heard, E .
NATURE REVIEWS GENETICS, 2001, 2 (01) :59-67
[3]   The expanding snoRNA world [J].
Bachellerie, JP ;
Cavaillé, J ;
Hüttenhofer, A .
BIOCHIMIE, 2002, 84 (08) :775-790
[4]   Ultraconserved elements in the human genome [J].
Bejerano, G ;
Pheasant, M ;
Makunin, I ;
Stephen, S ;
Kent, WJ ;
Mattick, JS ;
Haussler, D .
SCIENCE, 2004, 304 (5675) :1321-1325
[5]   Phylogenetic shadowing and computational identification of human microRNA genes [J].
Berezikov, E ;
Guryev, V ;
van de Belt, J ;
Wienholds, E ;
Plasterk, RHA ;
Cuppen, E .
CELL, 2005, 120 (01) :21-24
[6]   Global identification of human transcribed sequences with genome tiling arrays [J].
Bertone, P ;
Stolc, V ;
Royce, TE ;
Rozowsky, JS ;
Urban, AE ;
Zhu, XW ;
Rinn, JL ;
Tongprasit, W ;
Samanta, M ;
Weissman, S ;
Gerstein, M ;
Snyder, M .
SCIENCE, 2004, 306 (5705) :2242-2246
[7]   Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs [J].
Cawley, S ;
Bekiranov, S ;
Ng, HH ;
Kapranov, P ;
Sekinger, EA ;
Kampa, D ;
Piccolboni, A ;
Sementchenko, V ;
Cheng, J ;
Williams, AJ ;
Wheeler, R ;
Wong, B ;
Drenkow, J ;
Yamanaka, M ;
Patel, S ;
Brubaker, S ;
Tammana, H ;
Helt, G ;
Struhl, K ;
Gingeras, TR .
CELL, 2004, 116 (04) :499-509
[8]   Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution [J].
Cheng, J ;
Kapranov, P ;
Drenkow, J ;
Dike, S ;
Brubaker, S ;
Patel, S ;
Long, J ;
Stern, D ;
Tammana, H ;
Helt, G ;
Sementchenko, V ;
Piccolboni, A ;
Bekiranov, S ;
Bailey, DK ;
Ganesh, M ;
Ghosh, S ;
Bell, I ;
Gerhard, DS ;
Gingeras, TR .
SCIENCE, 2005, 308 (5725) :1149-1154
[9]   Inhibition of Escherichia coli RNase P by oligonucleotide directed misfolding of RNA [J].
Childs, JL ;
Poole, AW ;
Turner, DH .
RNA, 2003, 9 (12) :1437-1445
[10]   Finishing the euchromatic sequence of the human genome [J].
Collins, FS ;
Lander, ES ;
Rogers, J ;
Waterston, RH .
NATURE, 2004, 431 (7011) :931-945