A genetic algorithm for the multidimensional knapsack problem

被引:600
作者
Chu, PC [1 ]
Beasley, JE [1 ]
机构
[1] Imperial Coll, Sch Management, London SW7 2AZ, England
关键词
genetic algorithms; multidimensional knapsack; multiconstraint knapsack; combinatorial optimisation;
D O I
10.1023/A:1009642405419
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present a heuristic based upon genetic algorithms for the multidimensional knapsack problem. A heuristic operator which utilises problem-specific knowledge is incorporated into the standard genetic algorithm approach. Computational results show that the genetic algorithm heuristic is capable of obtaining high-quality solutions for problems of various characteristics, whilst requiring only a modest amount of computational effort. Computational results also show that the genetic algorithm heuristic gives superior quality solutions to a number of other heuristics.
引用
收藏
页码:63 / 86
页数:24
相关论文
共 79 条
[1]  
Aboudi R., 1994, ORSA Journal on Computing, V6, P82, DOI 10.1287/ijoc.6.1.82
[2]  
[Anonymous], 1982, Management of Distributed Data Processing
[3]  
[Anonymous], THESIS U LONDON
[4]   PROBABILISTIC PROPERTIES OF THE DUAL STRUCTURE OF THE MULTIDIMENSIONAL KNAPSACK-PROBLEM AND FAST STATISTICALLY EFFICIENT ALGORITHMS [J].
AVERBAKH, I .
MATHEMATICAL PROGRAMMING, 1994, 65 (03) :311-330
[5]  
Back T., 1997, Handbook of evolutionary computation
[6]   PIVOT AND COMPLEMENT - A HEURISTIC FOR 0-1 PROGRAMMING [J].
BALAS, E ;
MARTIN, CH .
MANAGEMENT SCIENCE, 1980, 26 (01) :86-96
[7]   AN ADDITIVE ALGORITHM FOR SOLVING LINEAR PROGRAMS WITH 0-1 VARIABLES [J].
BALAS, E .
OPERATIONS RESEARCH, 1965, 13 (04) :517-&
[8]  
BATTITI R, 1995, OR SPEKTRUM, V17, P67, DOI 10.1007/BF01719249
[9]  
BEASLEY D, 1993, U COMPUT, V15, P58
[10]  
BEASLEY D, 1993, U COMPUT, V15, P170