A genetic algorithm for the multidimensional knapsack problem

被引:600
作者
Chu, PC [1 ]
Beasley, JE [1 ]
机构
[1] Imperial Coll, Sch Management, London SW7 2AZ, England
关键词
genetic algorithms; multidimensional knapsack; multiconstraint knapsack; combinatorial optimisation;
D O I
10.1023/A:1009642405419
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present a heuristic based upon genetic algorithms for the multidimensional knapsack problem. A heuristic operator which utilises problem-specific knowledge is incorporated into the standard genetic algorithm approach. Computational results show that the genetic algorithm heuristic is capable of obtaining high-quality solutions for problems of various characteristics, whilst requiring only a modest amount of computational effort. Computational results also show that the genetic algorithm heuristic gives superior quality solutions to a number of other heuristics.
引用
收藏
页码:63 / 86
页数:24
相关论文
共 79 条
[21]   DISCRETE-VARIABLE EXTREMUM PROBLEMS [J].
DANTZIG, GB .
OPERATIONS RESEARCH, 1957, 5 (02) :266-277
[22]  
DAVIS L, 1987, GENETIC ALGORITHMS S, P1
[23]   A SIMULATED ANNEALING APPROACH TO THE MULTICONSTRAINT ZERO-ONE KNAPSACK-PROBLEM [J].
DREXL, A .
COMPUTING, 1988, 40 (01) :1-8
[24]   NEW OPTIMIZATION HEURISTICS - THE GREAT DELUGE ALGORITHM AND THE RECORD-TO-RECORD TRAVEL [J].
DUECK, G .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 104 (01) :86-92
[25]   THRESHOLD ACCEPTING - A GENERAL-PURPOSE OPTIMIZATION ALGORITHM APPEARING SUPERIOR TO SIMULATED ANNEALING [J].
DUECK, G ;
SCHEUER, T .
JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 90 (01) :161-175
[27]   A STATISTICAL-ANALYSIS OF THE KNAPSACK-PROBLEM [J].
FONTANARI, JF .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (17) :4751-4759
[28]   A HEURISTIC WITH TIE BREAKING FOR CERTAIN 0-1 INTEGER PROGRAMMING-MODELS [J].
FOX, GE ;
SCUDDER, GD .
NAVAL RESEARCH LOGISTICS, 1985, 32 (04) :613-623
[29]   AN EFFICIENT PREPROCESSING PROCEDURE FOR THE MULTIDIMENSIONAL 0-1-KNAPSACK PROBLEM [J].
FREVILLE, A ;
PLATEAU, G .
DISCRETE APPLIED MATHEMATICS, 1994, 49 (1-3) :189-212
[30]  
Freville A., 1996, Journal of Heuristics, V2, P147, DOI 10.1007/BF00247210