Derivation of the ascending aortic-carotid pressure transfer function with an arterial model

被引:32
作者
Karamanoglu, M
Feneley, MP
机构
[1] ST VINCENTS HOSP, DEPT CARDIOL, DARLINGHURST, NSW 2010, AUSTRALIA
[2] ST VINCENTS HOSP, VICTOR CHANG CARDIAC RES INST, DARLINGHURST, NSW 2010, AUSTRALIA
来源
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY | 1996年 / 271卷 / 06期
关键词
blood pressure measurement; arterial tonometry; simulation;
D O I
10.1152/ajpheart.1996.271.6.H2399
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
To devise a method of deriving the ascending aortic pressure waveform from the noninvasively determined carotid arterial waveform, ascending aortic and carotid arterial pressures were recorded in 13 patients aged 58.5 +/- 10.0 (SD) yr. A single viscoelastic tube terminated with a modified windkessel was used to model the carotid arterial system. For each patient the model parameters, characteristic impedance of the tube (Z(0)), reflection coefficient at the termination (Gamma), and time constant of the windkessel (tau), were estimated by minimizing the root-mean square error between the measured and predicted carotid waveforms, with the ascending aortic pressure waveform as input. The resulting arterial parameters were realistic: Z(0) = 729.5 +/- 246.8 dyn . s . cm(-3), Gamma = 0.75 +/- 0.19, and tau = 0.16 +/- 0.17 s. A generalized model constructed with these mean parameters yielded a smaller error between predicted End measured carotid arterial pressures (3.4 +/- 1.3 mmHg) than between ascending aortic pressure and measured carotid arterial pressure (4.4 +/- 1.6 mmHg, P < 0.01) and also reproduced the carotid wave contour indexed by the ratio of late systolic to early systolic peak amplitude: predicted = 1.26 +/- 0.05 and measured = 1.24 +/- 0.16 vs. aortic = 1.55 +/- 0.19.
引用
收藏
页码:H2399 / H2404
页数:6
相关论文
共 18 条
[1]   DYNAMIC ELASTIC PROPERTIES OF ARTERIAL WALL [J].
BERGEL, DH .
JOURNAL OF PHYSIOLOGY-LONDON, 1961, 156 (03) :458-&
[2]   NONINVASIVE ASSESSMENT OF MECHANICAL-PROPERTIES OF PERIPHERAL ARTERIES [J].
BUNTIN, CM ;
SILVER, FH .
ANNALS OF BIOMEDICAL ENGINEERING, 1990, 18 (05) :549-566
[3]   ARTERIAL TONOMETRY - REVIEW AND ANALYSIS [J].
DRZEWIECKI, GM ;
MELBIN, J ;
NOORDERGRAAF, A .
JOURNAL OF BIOMECHANICS, 1983, 16 (02) :141-152
[4]  
FRY DL, 1964, PULSATILE BLOOD FLOW, P85
[5]   INVIVO VISCOELASTIC BEHAVIOR IN THE HUMAN AORTA [J].
IMURA, T ;
YAMAMOTO, K ;
SATOH, T ;
KANAMORI, K ;
MIKAMI, T ;
YASUDA, H .
CIRCULATION RESEARCH, 1990, 66 (05) :1413-1419
[6]   PRESSURE WAVE-PROPAGATION IN A MULTIBRANCHED MODEL OF THE HUMAN UPPER-LIMB [J].
KARAMANOGLU, M ;
GALLAGHER, DE ;
AVOLIO, AP ;
OROURKE, MF .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 1995, 269 (04) :H1363-H1369
[7]   NONINVASIVE DETERMINATION OF AORTIC INPUT IMPEDANCE AND EXTERNAL LEFT-VENTRICULAR POWER OUTPUT - A VALIDATION AND REPEATABILITY STUDY OF A NEW TECHNIQUE [J].
KELLY, R ;
FITCHETT, D .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 1992, 20 (04) :952-963
[8]  
Kelly R, 1989, J Vasc Med Biol, V1, P241
[9]   EFFECT OF AN INELASTIC AORTIC SYNTHETIC VASCULAR GRAFT ON EXERCISE HEMODYNAMICS [J].
KIM, SY ;
HINKAMP, TJ ;
JACOBS, WR ;
LICHTENBERG, RC ;
POSNIAK, H ;
PIFARRE, R .
ANNALS OF THORACIC SURGERY, 1995, 59 (04) :981-989
[10]   NONINVASIVE DETERMINATION OF THE LEFT-VENTRICULAR END-SYSTOLIC PRESSURE [J].
KYRIAKIDES, ZS ;
KREMASTINOS, DT ;
RENTOUKAS, E ;
VAVELIDIS, J ;
DAMIANOU, C ;
TOUTOUZAS, P .
INTERNATIONAL JOURNAL OF CARDIOLOGY, 1991, 33 (02) :267-274