Models of the impact of dengue vaccines: A review of current research and potential approaches

被引:74
作者
Johansson, Michael A. [2 ]
Hombach, Joachim [3 ]
Cummings, Derek A. T. [1 ]
机构
[1] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Epidemiol, Baltimore, MD 21205 USA
[2] US Ctr Dis Control, Div Vector Borne Dis, San Juan, PR 00920 USA
[3] WHO, Initiat Vaccine Res, CH-1211 Geneva, Switzerland
基金
美国国家卫生研究院;
关键词
Diff46Dengue; Vaccine; Theoretical model; Review; ANTIBODY-DEPENDENT ENHANCEMENT; SAO-PAULO STATE; HEMORRHAGIC-FEVER; TRANSMISSION DYNAMICS; REPRODUCTION NUMBER; VIRUS SEROTYPES; DISEASE-MODELS; BORNE DISEASES; YELLOW-FEVER; EPIDEMIC;
D O I
10.1016/j.vaccine.2011.06.042
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Vaccination reduces transmission of pathogens directly, by preventing individual infections, and indirectly, by reducing the probability of contact between infected individuals and susceptible ones. The potential combined impact of future dengue vaccines can be estimated using mathematical models of transmission. However, there is considerable uncertainty in the structure of models that accurately represent dengue transmission dynamics. Here, we review models that could be used to assess the impact of future dengue immunization programmes. We also review approaches that have been used to validate and parameterize models. A key parameter of all approaches is the basic reproduction number, R-0, which can be used to determine the critical vaccination fraction to eliminate transmission. We review several methods that have been used to estimate this quantity. Finally, we discuss the characteristics of dengue vaccines that must be estimated to accurately assess their potential impact on dengue virus transmission. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5860 / 5868
页数:9
相关论文
共 72 条
[1]   Cross-protective immunity can account for the alternating epidemic pattern of dengue virus serotypes circulating in Bangkok [J].
Adams, B. ;
Holmes, E. C. ;
Zhang, C. ;
Mammen, M. P., Jr. ;
Nimmannitya, S. ;
Kalayanarooj, S. ;
Boots, M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (38) :14234-14239
[2]   Modelling the relationship between antibody-dependent enhancement and immunological distance with application to dengue [J].
Adams, Ben ;
Boots, Michael .
JOURNAL OF THEORETICAL BIOLOGY, 2006, 242 (02) :337-346
[3]   Man Bites Mosquito: Understanding the Contribution of Human Movement to Vector-Borne Disease Dynamics [J].
Adams, Ben ;
Kapan, Durrell D. .
PLOS ONE, 2009, 4 (08)
[4]  
ANDERSON R M, 1991
[5]   Analyzing the control of mosquito-borne diseases by a dominant lethal genetic system [J].
Atkinson, Michael P. ;
Su, Zheng ;
Alphey, Nina ;
Alphey, Luke S. ;
Coleman, Paul G. ;
Wein, Lawrence M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (22) :9540-9545
[6]  
Bartley LM, 2002, T ROY SOC TROP MED H, V96, P387, DOI 10.1016/S0035-9203(02)90371-8
[7]   Epidemics with multistrain interactions: The interplay between cross immunity and antibody-dependent enhancement [J].
Bianco, Simone ;
Shaw, Leah B. ;
Schwartz, Ira B. .
CHAOS, 2009, 19 (04)
[8]   Vaccinations in disease models with antibody-dependent enhancement [J].
Billings, Lora ;
Fiorillo, Amy ;
Schwartz, Ira B. .
MATHEMATICAL BIOSCIENCES, 2008, 211 (02) :265-281
[9]   Instabilities in multiserotype disease models with antibody-dependent enhancement [J].
Billings, Lora ;
Schwartz, Ira B. ;
Shaw, Leah B. ;
McCrary, Marie ;
Burke, Donald S. ;
Cummings, Derek A. T. .
JOURNAL OF THEORETICAL BIOLOGY, 2007, 246 (01) :18-27
[10]   Modelling the control strategies against dengue in Singapore [J].
Burattini, M. N. ;
Chen, M. ;
Chow, A. ;
Coutinho, F. A. B. ;
Goh, K. T. ;
Lopez, L. F. ;
Ma, S. ;
Massad, E. .
EPIDEMIOLOGY AND INFECTION, 2008, 136 (03) :309-319