Comparison of statistical methods for identification of Streptococcus thermophilus, Enterococcus faecalis, and Enterococcus faecium from randomly amplified polymorphic DNA patterns

被引:23
作者
Moschetti, G
Blaiotta, G
Villani, F
Coppola, S
Parente, E
机构
[1] Univ Basilicata, Dipartimento Biol Difesa & Biotecnol Agroforestal, I-85100 Potenza, Italy
[2] Univ Naples Federico II, Dipartimento Sci Alimenti, I-80055 Portici, Italy
关键词
D O I
10.1128/AEM.67.5.2156-2166.2001
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Thermophilic streptococci play an important role in the manufacture of many European cheeses, and a rapid and reliable method for their identification is needed. Randomly amplified polymorphic DNA (RAPD) PCR (RAPD-PCR) with two different primers coupled to hierarchical cluster analysis has proven to be a powerful tool for the classification and typing of Streptococcus thermophilus, Enterococcus faecalis, and Enterococcus faecalis (G, Moschetti, G, Blaiotta, M, Aponte, P, Catzeddu, F, Villani, P. Deiana, and S, Coppola, J, Appl. Microbiol, 85:25-36, 1998), In order to develop a fast and inexpensive method for the identification of thermophilic streptococci, RAPD-PCR patterns were generated with a single primer (XD9), and the results were analyzed using artificial neural networks (Multilayer Perceptron, Radial Basis Function network and Bayesian network) and multivariate statistical techniques (cluster analysis, linear discriminant analysis, and classification trees). Cluster analysis allowed the identification of S, thermophilus but not of enterococci. A Bayesian network proved to be more effective than a Multilayer Perceptron or a Radial Basis Function network for the identification of S. thermophilus, E. faecium, and E. faecalis using simplified RAPD-PCR patterns (obtained by summing the bands in selected areas of the patterns). The Bayesian network also significantly outperformed two multivariate statistical techniques (linear discriminant analysis and classification trees) and proved to be less sensitive to the size of the training set and more robust in the response to patterns belonging to unknown species.
引用
收藏
页码:2156 / 2166
页数:11
相关论文
共 34 条
[1]   Training radial basis function neural networks: effects of training set size and imbalanced training sets [J].
Al-Haddad, L ;
Morris, CW ;
Boddy, L .
JOURNAL OF MICROBIOLOGICAL METHODS, 2000, 43 (01) :33-44
[2]  
Almeida JS, 1995, BINARY-COMPUT MICROB, V7, P159
[3]   Genetic diversity within Lactobacillus sakei and Lactobacillus curvatus and design of PCR primers for its detection using randomly amplified polymorphic DNA [J].
Berthier, F ;
Ehrlich, SD .
INTERNATIONAL JOURNAL OF SYSTEMATIC BACTERIOLOGY, 1999, 49 :997-1007
[4]   SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation [J].
Blewitt, Marnie E. ;
Gendrel, Anne-Valerie ;
Pang, Zhenyi ;
Sparrow, Duncan B. ;
Whitelaw, Nadia ;
Craig, Jeffrey M. ;
Apedaile, Anwyn ;
Hilton, Douglas J. ;
Dunwoodie, Sally L. ;
Brockdorff, Neil ;
Kay, Graham F. ;
Whitelaw, Emma .
NATURE GENETICS, 2008, 40 (05) :663-669
[5]   ESCHERICHIA-COLI O157-H7 RESTRICTION PATTERN-RECOGNITION BY ARTIFICIAL NEURAL-NETWORK [J].
CARSON, CA ;
KELLER, JM ;
MCADOO, KK ;
WANG, DY ;
HIGGINS, B ;
BAILEY, CW ;
THORNE, JG ;
PAYNE, BJ ;
SKALA, M ;
HAHN, AW .
JOURNAL OF CLINICAL MICROBIOLOGY, 1995, 33 (11) :2894-2898
[6]  
COPPOLA S, 1988, LAIT, V68, P295, DOI 10.1051/lait:1988319
[7]   EVALUATION OF RANDOM AMPLIFIED POLYMORPHIC DNA (RAPD)-PCR AS A METHOD TO DIFFERENTIATE LACTOBACILLUS-ACIDOPHILUS, LACTOBACILLUS-CRISPATUS, LACTOBACILLUS-AMYLOVORUS, LACTOBACILLUS-GALLINARUM, LACTOBACILLUS-GASSERI, AND LACTOBACILLUS-JOHNSONII [J].
DUPLESSIS, EM ;
DICKS, LMT .
CURRENT MICROBIOLOGY, 1995, 31 (02) :114-118
[8]   Molecular tools for identification of Penicillium starter cultures used in the food industry [J].
Dupont, J ;
Magnin, S ;
Marti, A ;
Brousse, M .
INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY, 1999, 49 (03) :109-118
[9]  
Everitt B, 1974, CLUSTER ANAL
[10]   RAPID IDENTIFICATION OF SPECIES WITHIN THE MYCOBACTERIUM-TUBERCULOSIS COMPLEX BY ARTIFICIAL NEURAL-NETWORK ANALYSIS OF PYROLYSIS MASS-SPECTRA [J].
FREEMAN, R ;
GOODACRE, R ;
SISSON, PR ;
MAGEE, JG ;
WARD, AC ;
LIGHTFOOT, NF .
JOURNAL OF MEDICAL MICROBIOLOGY, 1994, 40 (03) :170-173