Entanglement, quantum phase transition, and scaling in the XXZ chain -: art. no. 042330

被引:235
作者
Gu, SJ [1 ]
Lin, HQ
Li, YQ
机构
[1] Chinese Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China
[2] Zhejiang Univ, Zhenjiang Inst Modern Phys, Hangzhou 310027, Peoples R China
来源
PHYSICAL REVIEW A | 2003年 / 68卷 / 04期
关键词
D O I
10.1103/PhysRevA.68.042330
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Motivated by recent development in quantum entanglement, we study relations among concurrence C, SUq(2) algebra, quantum phase transition and correlation length at the zero temperature for the XXZ chain. We find that at the SU(2) point, the ground state possesses the maximum concurrence. When the anisotropic parameter Delta is deformed, however, its value decreases. Its dependence on Delta scales as C = C-0 - C-1 (Delta - 1)(2) in the XY metallic phase and near the critical point (i.e., 1 <Delta < 1.3) of the Ising-like insulating phase. We also study the dependence of C on the correlation length xi, and show that it satisfies C = C-0 - 1/2xi near the critical point. For different sizes of the system, we show that there exists a universal scaling function of C with respect to the correlation length xi.
引用
收藏
页数:4
相关论文
共 29 条
[1]  
ABBOTT J, MATHPH0306016
[2]  
[Anonymous], 2009, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744
[3]  
BAXTER RJ, 1982, EXACTLY SOLVED MODEL, P155
[4]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[5]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[6]   Quantum information and computation [J].
Bennett, CH ;
DiVincenzo, DP .
NATURE, 2000, 404 (6775) :247-255
[7]   Concentrating partial entanglement by local operations [J].
Bennett, CH ;
Bernstein, HJ ;
Popescu, S ;
Schumacher, B .
PHYSICAL REVIEW A, 1996, 53 (04) :2046-2052
[8]   Metal theory [J].
Bethe, H. .
ZEITSCHRIFT FUR PHYSIK, 1931, 71 (3-4) :205-226
[9]   Distributed entanglement [J].
Coffman, V ;
Kundu, J ;
Wootters, WK .
PHYSICAL REVIEW A, 2000, 61 (05) :5
[10]   Can quantum-mechanical description of physical reality be considered complete? [J].
Einstein, A ;
Podolsky, B ;
Rosen, N .
PHYSICAL REVIEW, 1935, 47 (10) :0777-0780