Green and red fluorescent proteins:: Photo- and thermally induced dynamics probed by site-selective spectroscopy and hole burning

被引:24
作者
Bonsma, S
Purchase, R
Jezowski, S
Gallus, J
Könz, F
Völker, S
机构
[1] Leiden Univ, Huygens & Gorlaeus Labs, NL-2300 RA Leiden, Netherlands
[2] Vrije Univ Amsterdam, Dept Biophys, NL-1081 HV Amsterdam, Netherlands
关键词
energy transfer; fluorescence spectroscopy; laser spectroscopy; photochemistry; proteins;
D O I
10.1002/cphc.200500005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The cloning and expression of autofluorescent proteins in living matter, combined with modern imaging techniques, have thoroughly changed the world of bioscience. In particular, such proteins are widely used as genetically encoded labels to track the movement of proteins as reporters of celluluar signals and to study protein-protein interactions by fluorescence resonance energy transfer (FRET). Their optical properties, however, are complex and it is important to understand these for the correct interpretation of imaging data and for the design of new fluorescent mutants. In this Minireview we start with a short survey of the field and then focus on the photo- and thermally induced dynamcis of green and red fluorescent proteins. In particular, we show how fluorescence line narrowing and high-resolution spectral hole burning at low temperatures can be used to unravel the photophysics and photochemistry and shed light on the intricate electronic structure of these proteins.
引用
收藏
页码:838 / 849
页数:12
相关论文
共 116 条
[1]   Experimental studies of the photophysics of gas-phase fluorescent protein chromophores [J].
Andersen, LH ;
Bluhme, H ;
Boyé, S ;
Jorgensen, TJD ;
Krogh, H ;
Nielsen, IB ;
Nielsen, SB ;
Svendsen, A .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2004, 6 (10) :2617-2627
[2]   An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein [J].
Ando, R ;
Hama, H ;
Yamamoto-Hino, M ;
Mizuno, H ;
Miyawaki, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (20) :12651-12656
[3]   Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral [J].
Baird, GS ;
Zacharias, DA ;
Tsien, RY .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (22) :11984-11989
[4]  
Battistutta R, 2000, PROTEINS, V41, P429, DOI 10.1002/1097-0134(20001201)41:4<429::AID-PROT10>3.0.CO
[5]  
2-D
[6]   Light-driven decarboxylation of wild-type green fluorescent protein [J].
Bell, AF ;
Stoner-Ma, D ;
Wachter, RM ;
Tonge, PJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (23) :6919-6926
[7]   Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed) [J].
Bevis, BJ ;
Glick, BS .
NATURE BIOTECHNOLOGY, 2002, 20 (01) :83-87
[8]   Light-induced conformational changes and energy transfer in red fluorescent protein [J].
Bonsma, S ;
Gallus, J ;
Könz, F ;
Purchase, R ;
Völker, S .
JOURNAL OF LUMINESCENCE, 2004, 107 (1-4) :203-212
[9]   Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein [J].
Brejc, K ;
Sixma, TK ;
Kitts, PA ;
Kain, SR ;
Tsien, RY ;
Ormo, M ;
Remington, SJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (06) :2306-2311
[10]   A monomeric red fluorescent protein [J].
Campbell, RE ;
Tour, O ;
Palmer, AE ;
Steinbach, PA ;
Baird, GS ;
Zacharias, DA ;
Tsien, RY .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (12) :7877-7882