Molecular identification of a functional homologue of the mammalian fatty acid amide hydrolase in Arabidopsis thaliana

被引:52
作者
Shrestha, R
Dixon, RA
Chapman, KD [1 ]
机构
[1] Univ N Texas, Dept Biol Sci, Div Biochem & Mol Biol, Denton, TX 76203 USA
[2] Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA
关键词
D O I
10.1074/jbc.M305613200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
N-Acylethanolamines (NAEs) are endogenous constituents of plant and animal tissues, and in vertebrates their hydrolysis terminates their participation as lipid mediators in the endocannabinoid signaling system. The membrane-bound enzyme responsible for NAE hydrolysis in mammals has been identified at the molecular level (designated fatty acid amide hydrolase, FAAH), and although an analogous enzyme activity was identified in microsomes of cotton seedlings, no molecular information is available for this enzyme in plants. Here we report the identification, the heterologous expression ( in Escherichia coli), and the biochemical characterization of an Arabidopsis thaliana FAAH homologue. Candidate Arabidopsis DNA sequences containing a characteristic amidase signature sequence (PS00571) were identified in plant genome data bases, and a cDNA was isolated by reverse transcriptase-PCR using Arabidopsis genome sequences to develop appropriate oligonucleotide primers. The cDNA was sequenced and predicted to encode a protein of 607 amino acids with 37% identity to rat FAAH within the amidase signature domain (18% over the entire length). Residues determined to be important for FAAH catalysis were conserved between the Arabidopsis and rat protein sequences. In addition, a single transmembrane domain near the N terminus was predicted in the Arabidopsis protein sequence, similar to that of the rat FAAH protein. The putative plant FAAH cDNA was expressed as an epitope/His-tagged fusion protein in E. coli and solubilized from cell lysates in the nonionic detergent, dodecyl maltoside. Affinity-purified recombinant protein was indeed active in hydrolyzing a variety of naturally occurring N-acylethanolamine types. Kinetic parameters and inhibition data for the recombinant Arabidopsis protein were consistent with these properties of the enzyme activity characterized previously in plant and animal systems. Collectively these data now provide support at the molecular level for a conserved mechanism between plants and animals for the metabolism of NAEs.
引用
收藏
页码:34990 / 34997
页数:8
相关论文
共 62 条
[1]   The heterotrimeric Thermus thermophilus Asp-tRNAAsn amidotransferase can also generate Gln-tRNAGln [J].
Becker, HD ;
Min, B ;
Jacobi, C ;
Raczniak, G ;
Pelaschier, J ;
Roy, H ;
Klein, S ;
Kern, D ;
Söll, D .
FEBS LETTERS, 2000, 476 (03) :140-144
[2]   Biosynthesis, uptake, and degradation of anandamide and palmitoylethanolamide in leukocytes [J].
Bisogno, T ;
Maurelli, S ;
Melck, D ;
DePetrocellis, L ;
DiMarzo, V .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (06) :3315-3323
[3]   Fatty acid amide hydrolase, an enzyme with many bioactive substrates. Possible therapeutic implications [J].
Bisogno, T ;
De Petrocellis, L ;
Di Marzo, V .
CURRENT PHARMACEUTICAL DESIGN, 2002, 8 (07) :533-547
[4]   Elevated levels of N-lauroylethanolamine, an endogenous constituent of desiccated seeds, disrupt normal root development in Arabidopsis thaliana seedlings [J].
Blancaflor, EB ;
Hou, G ;
Chapman, KD .
PLANTA, 2003, 217 (02) :206-217
[5]   Fatty acid amide hydrolase substrate specificity [J].
Boger, DL ;
Fecik, RA ;
Patterson, JE ;
Miyauchi, H ;
Patricelli, MP ;
Cravatt, BF .
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2000, 10 (23) :2613-2616
[6]   Structural adaptations in a membrane enzyme that terminates endocannabinoid signaling [J].
Bracey, MH ;
Hanson, MA ;
Masuda, KR ;
Stevens, RC ;
Cravatt, BF .
SCIENCE, 2002, 298 (5599) :1793-1796
[7]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[8]   Immunomodulation by cannabinoids is absent in mice deficient for the cannabinoid CB2 receptor [J].
Buckley , NE ;
McCoy, KL ;
Mezey, É ;
Bonner, T ;
Zimmer, A ;
Felder, CC ;
Glass, M ;
Zimmer, A .
EUROPEAN JOURNAL OF PHARMACOLOGY, 2000, 396 (2-3) :141-149
[9]   IDENTIFICATION OF A PUTATIVE AMIDASE GENE IN YEAST SACCHAROMYCES-CEREVISIAE [J].
CHANG, TH ;
ABELSON, J .
NUCLEIC ACIDS RESEARCH, 1990, 18 (23) :7180-7180
[10]   N-acylethanolamines in seeds.: Quantification of molecular species and their degradation upon imbibition [J].
Chapman, KD ;
Venables, B ;
Markovic, R ;
Blair, RW ;
Bettinger, C .
PLANT PHYSIOLOGY, 1999, 120 (04) :1157-1164