A local regularization operator for triangular and quadrilateral finite elements

被引:152
作者
Bernardi, C
Girault, V
机构
[1] CNRS, Anal Numer Lab, F-75252 Paris 05, France
[2] Univ Paris 06, F-75252 Paris, France
[3] Indian Inst Sci, Bangalore 560012, Karnataka, India
关键词
regularization operator; triangular finite elements; quadrilateral finite elements;
D O I
10.1137/S0036142995293766
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper develops a local regularization operator on triangular or quadrilateral finite elements built on structured or unstructured meshes. This operator is a variant of the regularization operator of Clement; however, ours is constructed via a local projection in a reference domain. We prove in this paper that it has the same optimal approximation properties as the standard interpolation operator, and we present some applications.
引用
收藏
页码:1893 / 1916
页数:24
相关论文
共 17 条
  • [11] Lions J.-P., 1970, PROBLEMES AUX LIMITE
  • [12] Necas J., 1967, Les methodes directes en theorie des equations elliptiques
  • [13] SCOTT LR, 1990, MATH COMPUT, V54, P483, DOI 10.1090/S0025-5718-1990-1011446-7
  • [14] A POSTERIORI ERROR ESTIMATORS FOR THE STOKES EQUATIONS
    VERFURTH, R
    [J]. NUMERISCHE MATHEMATIK, 1989, 55 (03) : 309 - 325
  • [15] Verfurth R., 1996, A review of a posteriori error estimation and adaptive-mesh-refinement techniques
  • [16] WIDLUND OB, 1986, NUMERICAL TECHNIQUES
  • [17] [No title captured]