Novel rapid shutdown strategies for runaway electron suppression in DIII-D

被引:63
作者
Commaux, N. [1 ]
Baylor, L. R. [1 ]
Combs, S. K. [1 ]
Eidietis, N. W. [2 ]
Evans, T. E. [2 ]
Foust, C. R. [1 ]
Hollmann, E. M. [3 ]
Humphreys, D. A. [2 ]
Izzo, V. A. [3 ]
James, A. N. [3 ]
Jernigan, T. C. [1 ]
Meitner, S. J. [1 ]
Parks, P. B. [2 ]
Wesley, J. C. [2 ]
Yu, J. H. [3 ]
机构
[1] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA
[2] Gen Atom Co, San Diego, CA 92186 USA
[3] Univ Calif San Diego, La Jolla, CA 92093 USA
关键词
IMPURITY;
D O I
10.1088/0029-5515/51/10/103001
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
New rapid shutdown strategies have been recently tested in the DIII-D tokamak to mitigate runaway electrons (REs). Disruptions in ITER are predicted to generate multi-MeV REs that could damage the machine. The RE population in large tokamaks is expected to be dominated by avalanche amplification which can be mitigated at high density levels by collisional drag. Particle injection schemes for collisional suppression of RE have been developed and tested in ITER-relevant scenarios: massive gas injection, shattered pellet injection (SPI) and shell pellet injection. The results show an improved penetration of particles injected with the SPI. Another strategy has been developed to harmlessly deconfine REs by applying a non-axisymmetric magnetic perturbation to worsen their confinement. This technique appeared to deconfine seed RE before the avalanche process could amplify the RE beam. The last method tested was to use the plasma position control system on the RE beam to prevent it from contacting the wall. This proved effective in preventing high current RE beam from touching the wall and providing more time to mitigate an existing RE beam but a successful 'soft landing' (without fast final losses) of the RE has not been observed yet.
引用
收藏
页数:9
相关论文
共 19 条
[11]  
Izzo V.A., 2010, FUS EN P 23 INT C DA
[12]  
James A.N., 2011, J NUCL MAT UNPUB
[13]  
KADOMTSEV BB, 1984, PLASMA PHYS CONTR F, V26, P217
[14]   Suppression of runaway electrons by resonant magnetic perturbations in TEXTOR disruptions [J].
Lehnen, M. ;
Bozhenkov, S. A. ;
Abdullaev, S. S. ;
Jakubowski, M. W. .
PHYSICAL REVIEW LETTERS, 2008, 100 (25)
[15]   Plasma shut-down with fast impurity puff on ASDEX Upgrade [J].
Pautasso, G. ;
Fuchs, C. J. ;
Gruber, O. ;
Maggi, C. F. ;
Maraschek, M. ;
Puetterich, T. ;
Rohde, V. ;
Wittmann, C. ;
Wolfrum, E. ;
Cierpka, P. ;
Beck, M. .
NUCLEAR FUSION, 2007, 47 (08) :900-913
[16]   Theory for avalanche of runaway electrons in tokamaks [J].
Rosenbluth, MN ;
Putvinski, SV .
NUCLEAR FUSION, 1997, 37 (10) :1355-1362
[17]   Nonlinear magnetohydrodynamics simulation using high-order finite elements [J].
Sovinec, CR ;
Glasser, AH ;
Gianakon, TA ;
Barnes, DC ;
Nebel, RA ;
Kruger, SE ;
Schnack, DD ;
Plimpton, SJ ;
Tarditi, A ;
Chu, MS .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 195 (01) :355-386
[18]  
Wesley J.C., 2008, FUS EN P 22 IAEA C G
[19]   Runaway electrons in magnetic turbulence and runaway current termination in tokamak discharges [J].
Yoshino, R ;
Tokuda, S .
NUCLEAR FUSION, 2000, 40 (07) :1293-1309