Ca2+ signals regulate many cellular functions, including hormone secretion. Agonist-specific Ca2+ signaling may arise from the differential mobilization of multiple Ca2+ stores. Although they act through the same receptor subtype, two gonadotropin-releasing hormones (sGnRH and cGnRH-II) generate quantifiably different Ca2+ signals in goldfish gonadotropes, suggesting that their Ca2+-dependent signaling cascades may differ. We combined electrophysiology, Ca2+ imaging, and radioimmunoassay detection of gonadotropin (GTH-II) secretion to determine the role of intracellular Ca2+ stores in GnRH-stimulated exocytosis. Our findings suggest that voltage-gated Ca2+ channels do not mediate acute GnRH-signaling. Instead, both sGnRH- and cGnRH-II-stimulated GTH-II releases are dependent on Ca2+ mobilized from TMB-8/CPA-sensitive compartments. However, sGnRH, but not cGnRH-II, utilizes intracellular stores sensitive to caffeine and xestospongin C. We also identified a homeostatic mechanism where reduced extracellular Ca2+ availability increase GTH-II release by mobilizing Ca2+ stores. Our results are the first to suggest that several classes of intracellular Ca2+ stores differentially participate in agonist signaling and homeostasis in gonadotropes. (C) 2000 Elsevier Science Ireland Ltd. All rights reserved.