Molecular mechanisms of the functional coupling of the helicase (gp41) and polymerase (gp43) of bacteriophage T4 within the DNA replication fork

被引:58
作者
Delagoutte, E
von Hippel, PH [1 ]
机构
[1] Univ Oregon, Inst Mol Biol, Eugene, OR 97403 USA
[2] Univ Oregon, Dept Chem, Eugene, OR 97403 USA
关键词
D O I
10.1021/bi001306l
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Processive strand-displacement DNA synthesis with the T4 replication system requires functional "coupling" between the DNA polymerase (gp43) and the helicase (gp41). To define the physical basis of this functional coupling, we have used analytical ultracentrifugation to show that gp43 is a monomeric species at physiological protein concentrations and that gp41 and gp43 do not physically interact in the absence of DNA, suggesting that the functional coupling between gp41 and gp43 depends significantly on interactions modulated by the replication fork DNA. Results from strand-displacement DNA synthesis show that a minimal gp41-gp43 replication complex can perform strand-displacement synthesis at similar to 90 nts/s in a solution containing poly(ethylene glycol) to drive helicase loading. In contrast, neither the Klenow fragment of Escherichia coli DNA polymerase I nor the T7 DNA polymerase, both of which are nonprocessive polymerases, can carry out strand-displacement DNA synthesis with gp41, suggesting that the functional helicase-polymerase coupling may require the homologous system. However, we show that a heterologous helicase-polymerase pair can work if the polymerase is processive. Strand-displacement DNA synthesis using the gp41 helicase with the T4 DNA polymerase holoenzyme or the phage T7 DNA polymerase-thioredoxin complex, both of which are processive, proceeds at the rate of similar to 250 nts/s. However, replication fork assembly is less efficient with the heterologous helicase-polymerase pair. Therefore, a processive (homologous or heterologous) "trailing" DNA polymerase is sufficient to improve gp41 processivity and unwinding activity in the elongation stage of the helicase reaction, and specific T4 helicase-polymerase coupling becomes significant only in the assembly (or initiation) stage.
引用
收藏
页码:4459 / 4477
页数:19
相关论文
共 75 条
[11]  
Cole J L, 1999, J Biomol Tech, V10, P163
[12]   COORDINATION OF LEADING AND LAGGING-STRAND DNA-SYNTHESIS AT THE REPLICATION FORK OF BACTERIOPHAGE-T7 [J].
DEBYSER, Z ;
TABOR, S ;
RICHARDSON, CC .
CELL, 1994, 77 (01) :157-166
[13]   Identification and interpretation of complexity in sedimentation velocity boundaries [J].
Demeler, B ;
Saber, H ;
Hansen, JC .
BIOPHYSICAL JOURNAL, 1997, 72 (01) :397-407
[14]   THE PHAGE T4-CODED DNA-REPLICATION HELICASE (GP41) FORMS A HEXAMER UPON ACTIVATION BY NUCLEOSIDE TRIPHOSPHATE [J].
DONG, F ;
GOGOL, EP ;
VONHIPPEL, PH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (13) :7462-7473
[15]   The ATP-activated hexameric helicase of bacteriophage T4 (gp41) forms a stable primosome with a single subunit of T4-coded primase (gp61) [J].
Dong, F ;
vonHippel, PH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (32) :19625-19631
[16]   A coupled complex of T4 DNA replication helicase (gp41) and polymerase (gp43) can perform rapid and processive DNA strand-displacement synthesis [J].
Dong, F ;
Weitzel, SE ;
vonHippel, PH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (25) :14456-14461
[17]   The herpes simplex virus type 1 helicase-primase - Analysis of helicase activity [J].
Falkenberg, M ;
Elias, P ;
Lehman, IR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (48) :32154-32157
[18]   The linker region between the helicase and primase domains of the bacteriophage T7 gene 4 protein is critical for hexamer formation [J].
Guo, SY ;
Tabor, S ;
Richardson, CC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (42) :30303-30309
[19]   Sliding clamps: A (tail)ored fit [J].
Hingorani, MM ;
O'Donnell, M .
CURRENT BIOLOGY, 2000, 10 (01) :R25-R29
[20]   Toroidal proteins: Running rings around DNA [J].
Hingorani, MM ;
O'Donnell, M .
CURRENT BIOLOGY, 1998, 8 (03) :R83-R86