A heuristic for the degrees of freedom of statistics based on multiple variance parameters

被引:22
作者
Kiebel, SJ
Glaser, DE
Friston, KJ
机构
[1] Inst Neurol, Wellcome Dept Imaging Neurosci, Funct Imaging Lab, London WC1N 3BG, England
[2] Inst Cognit Neurosci, London, England
基金
英国医学研究理事会; 英国惠康基金;
关键词
D O I
10.1016/S1053-8119(03)00308-2
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In neuroimaging, data are often modeled using general linear models. Here, we focus on GLMs with error covariances which are modeled as a linear combination of multiple variance/covariance components. Each of these components is weighted by one variance parameter. In many analyses variance parameters are estimated using restricted maximum likelihood (ReML). Most classical approaches assume the error covariance matrix can be factorized into a single variance parameter and a nonspherical correlation matrix. In this context, the F test based on a single variance parameter, with a suitable correction to the degrees of freedom, is the standard inference tool. This correction can also be adapted to models with multiple variance parameters. However, this extension overlooks the uncertainty about the variance parameter estimates and P values tend to be underestimated. Here, we show how one can overcome this problem to render the F test more exact. This issue is important, because serial correlations in fMRI time series are generally modeled using multiple variance parameters. Another application is to hierarchical linear models, which are used for modeling multisubject data. To illustrate our approach, we apply it to some typical modeling scenarios in fMRI data analysis. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:591 / 600
页数:10
相关论文
共 10 条
[1]  
Fahrmeir L., 1994, MULTIVARIATE STAT MO, DOI 10.1007/978-1-4899-0010-4
[2]   Classical and Bayesian inference in neuroimaging: Applications [J].
Friston, KJ ;
Glaser, DE ;
Henson, RNA ;
Kiebel, S ;
Phillips, C ;
Ashburner, J .
NEUROIMAGE, 2002, 16 (02) :484-512
[3]   Classical and Bayesian inference in neuroimaging: Theory [J].
Friston, KJ ;
Penny, W ;
Phillips, C ;
Kiebel, S ;
Hinton, G ;
Ashburner, J .
NEUROIMAGE, 2002, 16 (02) :465-483
[4]  
GLASER DE, 2003, UNPUB POOLING COVARI
[5]  
HARVILLE DA, 1977, J AM STAT ASSOC, V72, P320, DOI 10.2307/2286796
[6]  
KIEBEL S, 2003, HUMAN BRAIN FUNCTI 2
[7]  
Rao C. R., 1995, LINEAR MODELS LEAST
[8]   ANALYSIS OF FMRI TIME-SERIES REVISITED - AGAIN [J].
WORSLEY, KJ ;
FRISTON, KJ .
NEUROIMAGE, 1995, 2 (03) :173-181
[9]   A general statistical analysis for fMRI data [J].
Worsley, KJ ;
Liao, CH ;
Aston, J ;
Petre, V ;
Duncan, GH ;
Morales, F ;
Evans, AC .
NEUROIMAGE, 2002, 15 (01) :1-15
[10]  
Yandell B. S., 1997, PRACTICAL DATA ANAL