Conserved mosquito/parasite interactions affect development of Plasmodium falciparum in Africa

被引:84
作者
Mendes, Antonio M. [1 ]
Schlegelmilch, Timm [1 ]
Cohuet, Anna [2 ]
Awono-Ambene, Parfait [3 ]
De Iorio, Maria [4 ]
Fontenille, Didier [2 ]
Morlais, Isabelle [3 ]
Christophides, George K. [1 ]
Kafatos, Fotis C. [1 ]
Vlachou, Dina [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Div Cell & Mol Biol, Fac Nat Sci, London, England
[2] Inst Rech Developpement, Lab Lutte Contre Insectes Nuisibles, Montpellier, France
[3] Lab Rech Paludisme, Org Coordinat Lutte Contre Endemies Afr Cent, Yaounde, Cameroon
[4] Univ London Imperial Coll Sci Technol & Med, Div Epidemiol, Dept Publ Hlth & Primary Care, Fac Med, London, England
基金
英国惠康基金;
关键词
D O I
10.1371/journal.ppat.1000069
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
In much of sub-Saharan Africa, the mosquito Anopheles gambiae is the main vector of the major human malaria parasite, Plasmodium falciparum. Convenient laboratory studies have identified mosquito genes that affect positively or negatively the developmental cycle of the model rodent parasite, P. berghei. Here, we use transcription profiling and reverse genetics to explore whether five disparate mosquito gene regulators of P. berghei development are also pertinent to A. gambiae/P. falciparum interactions in semi-natural conditions, using field isolates of this parasite and geographically related mosquitoes. We detected broadly similar albeit not identical transcriptional responses of these genes to the two parasite species. Gene silencing established that two genes affect similarly both parasites: infections are hindered by the intracellular local activator of actin cytoskeleton dynamics, WASP, but promoted by the hemolymph lipid transporter, ApoII/I. Since P. berghei is not a natural parasite of A. gambiae, these data suggest that the effects of these genes have not been drastically altered by constant interaction and co-evolution of A. gambiae and P. falciparum; this conclusion allowed us to investigate further the mode of action of these two genes in the laboratory model system using a suite of genetic tools and infection assays. We showed that both genes act at the level of midgut invasion during the parasite's developmental transition from ookinete to oocyst. ApoII/I also affects the early stages of oocyst development. These are the first mosquito genes whose significant effects on P. falciparum field isolates have been established by direct experimentation. Importantly, they validate for semi-field human malaria transmission the concept of parasite antagonists and agonists.
引用
收藏
页数:12
相关论文
共 53 条
[1]   Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum [J].
Anderson, TJC ;
Haubold, B ;
Williams, JT ;
Estrada-Franco, JG ;
Richardson, L ;
Mollinedo, R ;
Bockarie, M ;
Mokili, J ;
Mharakurwa, S ;
French, N ;
Whitworth, J ;
Velez, ID ;
Brockman, AH ;
Nosten, F ;
Ferreira, MU ;
Day, KP .
MOLECULAR BIOLOGY AND EVOLUTION, 2000, 17 (10) :1467-1482
[2]   Mitochondrial DNA divergence between wild and laboratory populations of Anopheles albimanus Wiedemann (Diptera: Culicidae) [J].
Arias, L ;
Bejarano, EE ;
Márquez, E ;
Moncada, J ;
Vélez, I ;
Uribe, S .
NEOTROPICAL ENTOMOLOGY, 2005, 34 (03) :499-506
[3]   Anopheles gambiae lipophorin:: Characterization and role in lipid transport to developing oocyte [J].
Atella, Georgia C. ;
Alberto, Mario ;
Silva-Neto, C. ;
Golodne, Daniel M. ;
Arefin, Shamsul ;
Shahabuddin, Mohammed .
INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2006, 36 (05) :375-386
[4]   Description of the transcriptomes of immune response-activated Hemocytes from the mosquito vectors Aedes aegypti and Armigeres subalbatus [J].
Bartholomay, LC ;
Cho, WL ;
Rocheleau, TA ;
Boyle, JP ;
Beck, ET ;
Fuchs, JF ;
Liss, P ;
Rusch, M ;
Butler, KM ;
Wu, RCC ;
Lin, SP ;
Kuo, FY ;
Tsao, IY ;
Huang, CY ;
Liu, TT ;
Hsiao, KJ ;
Tsai, SF ;
Yang, UC ;
Nappi, AJ ;
Perna, NT ;
Chen, CC ;
Christensen, BM .
INFECTION AND IMMUNITY, 2004, 72 (07) :4114-4126
[5]   How do malaria ookinetes cross the mosquito midgut wall? [J].
Baton, LA ;
Ranford-Cartwright, LC .
TRENDS IN PARASITOLOGY, 2005, 21 (01) :22-28
[6]  
Billingsley P. F., 1996, STRUCTURE ULTRASTRUC, DOI 10. 1007/978-94-009-1519-0
[7]   Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector Anopheles gambiae [J].
Blandin, S ;
Shiao, SH ;
Moita, LF ;
Janse, CJ ;
Waters, AP ;
Kafatos, FC ;
Levashina, EA .
CELL, 2004, 116 (05) :661-670
[8]   Reverse genetics in the mosquito Anopheles gambiae:: targeted disruption of the Defensin gene [J].
Blandin, S ;
Moita, LF ;
Köcher, T ;
Wilm, M ;
Kafatos, FC ;
Levashina, EA .
EMBO REPORTS, 2002, 3 (09) :852-856
[9]   Regulation of lipid metabolism genes, lipid carrier protein lipophorin, and its receptor during immune challenge in the mosquito Aedes aegypti [J].
Cheon, HM ;
Shin, SW ;
Bian, GW ;
Park, JH ;
Raikhel, AS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (13) :8426-8435
[10]   Immunity-related genes and gene families in Anopheles gambiae [J].
Christophides, GK ;
Zdobnov, E ;
Barillas-Mury, C ;
Birney, E ;
Blandin, S ;
Blass, C ;
Brey, PT ;
Collins, FH ;
Danielli, A ;
Dimopoulos, G ;
Hetru, C ;
Hoa, NT ;
Hoffmann, JA ;
Kanzok, SM ;
Letunic, I ;
Levashina, EA ;
Loukeris, TG ;
Lycett, G ;
Meister, S ;
Michel, K ;
Moita, LF ;
Müller, HM ;
Osta, MA ;
Paskewitz, SM ;
Reichhart, JM ;
Rzhetsky, A ;
Troxler, L ;
Vernick, KD ;
Vlachou, D ;
Volz, J ;
von Mering, C ;
Xu, JN ;
Zheng, LB ;
Bork, P ;
Kafatos, FC .
SCIENCE, 2002, 298 (5591) :159-165