The generalized quasilinearization method and three point boundary value problems on time scales

被引:18
作者
Atici, FM
Topal, SG
机构
[1] Western Kentucky Univ, Dept Math, Bowling Green, KY 42101 USA
[2] Ege Univ, Dept Math, TR-35100 Izmir, Turkey
基金
美国国家科学基金会;
关键词
time scales; three point boundary value problems; lower and upper solutions; convergence;
D O I
10.1016/j.aml.2004.06.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the convergence of monotone sequences of iterates for nonlinear second order dynamic equations with three point boundary conditions on time scales. We prove that it is possible to construct two sequences converging to the unique solution of the three point boundary value problem from above and below with high rate of convergence. (c) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:577 / 585
页数:9
相关论文
共 9 条
[1]  
AHMAD B, 2002, ELECT J DIFFERENTIAL, V90, P1
[2]   On Green's functions and positive solutions for boundary value problems on time scales [J].
Atici, FM ;
Guseinov, GS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 141 (1-2) :75-99
[3]  
Atici FM, 2004, DYNAM SYST APPL, V13, P327
[4]   The quasilinearization method for boundary value problems on time scales [J].
Atici, FM ;
Eloe, PW ;
Kaymakçalan, B .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 276 (01) :357-372
[5]  
Bohner M., 2001, Dynamic Equations on Time Scales: AnIntroduction With Applications, DOI DOI 10.1007/978-1-4612-0201-1
[6]  
Bohner M., 2003, Advances in Dynamic Equations on Time Scales: An Introduction with Applications, DOI DOI 10.1007/978-0-8176-8230-9
[7]   Quasilinearization and rate of convergence for higher-order nonlinear periodic boundary-value problems [J].
Cabada, A ;
Nieto, JJ .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2001, 108 (01) :97-107
[8]  
Eloe PW, 2002, J KOREAN MATH SOC, V39, P319
[9]  
Lakshmikantham V, 1998, GEN QUASILINEARIZATI