Structure-activity study on the quinone/quinone methide chemistry of flavonoids

被引:137
作者
Awad, HM
Boersma, MG
Boeren, S
van Bladeren, PJ
Vervoort, J
Rietjens, IMCM
机构
[1] Univ Wageningen & Res Ctr, Biochem Lab, NL-6703 HA Wageningen, Netherlands
[2] Natl Res Ctr, Dept Tanning Mat & Prot, Cairo, Egypt
[3] Univ Wageningen & Res Ctr, Div Toxicol, NL-6703 HE Wageningen, Netherlands
[4] TNO, WU Ctr Food Toxicol, NL-6700 EA Wageningen, Netherlands
关键词
D O I
10.1021/tx000216e
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
A structure-activity study on the quinone/quinone methide chemistry of a series of 3 ' ,4 ' -dihydroxyflavonoids was performed. Using the glutathione trapping method followed by HPLC, H-1 NMR, MALDI-TOF, and LC/MS analysis to identify the glutathionyl adducts, the chemical behavior of the quinones/quinone methides of the different flavonoids could be deduced. The nature and type of mono- and diglutathionyl adducts formed from quercetin, taxifolin, luteolin, fisetin, and 3,3 ' ,4 ' -trihydroxyflavone show how several structural elements influence the quinone/quinone methide chemistry of flavonoids. In line with previous findings, glutathionyl adduct formation for quercetin occurs at positions C6 and C8 of the A ring, due to the involvement of quinone methide-type intermediates. Elimination of the possibilities for efficient quinone methide formation by (i) the absence of the C3-OH group (luteolin), (ii) the absence of the C2=C3 double bond (taxifolin), or (iii) the absence of the C5-OH group (3,3 ' ,4 ' -trihydroxyflavone) results in glutathionyl adduct formation at the B ring due to involvement of the o-quinone isomer of the oxidized flavonoid. The extent of di- versus monoglutathionyl adduct formation was shown to depend on the ease of oxidation of the monoadduct as compared to the parent flavonoid. Finally, unexpected results obtained with fisetin provide new insight into the quinone/quinone methide chemistry of flavonoids. The regioselectivity and nature of the quinone adducts that formed appear to be dependent on pH. At pH values above the pK(a) for quinone protonation, glutathionyl adduct formation proceeds at the A or B ring following expected quinone/quinone methide isomerization patterns. However, decreasing the pH below this pK(a) results in a competing pathway in which glutathionyl adduct formation occurs in the C ring of the flavonoid, which is preceded by protonation of the quinone and accompanied by H2O adduct formation, also in the C ring of the flavonoid. All together, the data presented in this study confirm that quinone/quinone methide chemistry can be far from straightforward, but the study provides significant new data revealing an important pH dependence for the chemical behavior of this important class of electrophiles.
引用
收藏
页码:398 / 408
页数:11
相关论文
共 51 条
[1]   Estrogen nucleic acid adducts: Reaction of 3,4-estrone-o-quinone radical anion with deoxyribonucleosides [J].
Akanni, A ;
AbulHajj, YJ .
CHEMICAL RESEARCH IN TOXICOLOGY, 1997, 10 (07) :760-766
[2]  
Aksnes DW, 1996, MAGN RESON CHEM, V34, P820, DOI 10.1002/(SICI)1097-458X(199610)34:10<820::AID-OMR966>3.0.CO
[3]  
2-Q
[4]   Peroxidase-catalyzed formation of quercetin quinone methide-glutathione adducts [J].
Awad, HM ;
Boersma, MG ;
Vervoort, J ;
Rietjens, IMCM .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2000, 378 (02) :224-233
[5]   Regioselectivity and reversibility of the glutathione conjugation of quercetin quinone methide [J].
Boersma, MG ;
Vervoort, J ;
Szymusiak, H ;
Lemanska, K ;
Tyrakowska, B ;
Cenas, N ;
Segura-Aguilar, J ;
Rietjens, IMCM .
CHEMICAL RESEARCH IN TOXICOLOGY, 2000, 13 (03) :185-191
[6]   p-Quinone methides are the major decomposition products of catechol estrogen o-quinones [J].
Bolton, JL ;
Shen, L .
CARCINOGENESIS, 1996, 17 (05) :925-929
[7]   Role of quinoids in estrogen carcinogenesis [J].
Bolton, JL ;
Pisha, E ;
Zhang, FG ;
Qiu, SX .
CHEMICAL RESEARCH IN TOXICOLOGY, 1998, 11 (10) :1113-1127
[8]   Suitability of S-phenyl mercapturic acid and trans-trans-muconic acid as biomarkers for exposure to low concentrations of benzene [J].
Boogaard, PJ ;
vanSittert, NJ .
ENVIRONMENTAL HEALTH PERSPECTIVES, 1996, 104 :1151-1157
[9]   Formation of catechol estrogen glutathione conjugates and gamma-glutamyl transpeptidase-dependent nephrotoxicity of 17 beta-estradiol in the golden Syrian hamster [J].
Butterworth, M ;
Lau, SS ;
Monks, TJ .
CARCINOGENESIS, 1997, 18 (03) :561-567
[10]   17 beta-Estradiol metabolism by hamster hepatic microsomes: Comparison of catechol estrogen O-methylation with catechol estrogen oxidation and glutathione conjugation [J].
Butterworth, M ;
Lau, SS ;
Monks, TJ .
CHEMICAL RESEARCH IN TOXICOLOGY, 1996, 9 (04) :793-799