A comprehensive comparison of CH4-CO2 reforming activities of NiO/Al2O3 catalysts under fixed- and fluidized-bed operations

被引:51
作者
Chen, X [1 ]
Honda, K [1 ]
Zhang, ZG [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Toyohira Ku, Sapporo, Hokkaido 0628157, Japan
关键词
CH4(-)CO(2) reforming; Ni-based catalyst; fluidized-bed; carbon deposition;
D O I
10.1016/j.apcata.2005.04.037
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The fixed- and fluidized-bed CH4-CO2 reforming activities of Ni-based catalysts were systematically compared in an identical micro quartz reactor that can operate in either fixed- or fluidized-bed mode. Results demonstrated the superiority of fluidized-bed over that fixed-bed for the title reaction. Two commercial catalysts and one self-prepared Ni-based catalyst were tested first at the specific reforming conditions of a furnace temperature of 1073 K, a CO2/CH4 molar ratio of 1.5 and SV of 93,750 ml/(h g) to confirm that the superiority of fluidized-bed was independent of catalyst. A series of comparative tests over the self-prepared NiO/gamma-Al2O3 catalyst followed at various conditions: the furnace temperatures of 997-1173 K, the CO2/CH4 ratios of 1.0-2.5 and SVs of 25,000-187,500 ml/(h g). After we identified the superiority of fluidized-bed reforming at all but equilibrium-controlling conditions, two fixed- to fluidized-bed mode-switching reforming tests with the NiO/gamma-Al2O3 catalyst were conducted to provide decisive proof for the stated finding. In parallel, thermo-gravimetric analysis (TG), temperature programmed oxidation (TPO) and reduction (TPR) techniques were also applied to characterize the spent samples and then to elucidate the superiority of fluidized-bed reforming. Consequently, the TG and TPO results revealed that the amount of carbon deposited over the NiO/gamma-Al2O3 catalyst was always less under the fluidized-bed operation than the amount in the fixed-bed reforming, whereas TPR experiments depicted that the catalyst reduction was significantly improved under the fluidized-bed operations. Moreover, experimentally, special attention was paid to measuring the actual reforming temperatures and the results showed that the bed temperatures of the fluidized-bed reforming were always unexpectedly lower than those of the fixed-bed reforming. Thus, carbon removal through C-CO2 reaction in the oxidative regions and the catalyst reduction in the reductive zones of the fluidized-bed are proposed to explain its carbon deposition-suppressing and catalyst reduction-improving effects and then its higher reforming performances. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:86 / 97
页数:12
相关论文
共 51 条
[11]   Steam reforming of a clean model biogas over Ni/Al2O3 in fluidized- and fixed-bed reactors [J].
Effendi, A ;
Zhang, ZG ;
Hellgardt, K ;
Honda, K ;
Yoshida, T .
CATALYSIS TODAY, 2002, 77 (03) :181-189
[12]   Characterisation of carbon deposits on Ni/SiO2 in the reforming of CH4-CO2 using fixed- and fluidised-bed reactors [J].
Effendi, A ;
Hellgardt, K ;
Zhang, ZG ;
Yoshida, T .
CATALYSIS COMMUNICATIONS, 2003, 4 (04) :203-207
[13]   ACTIVATION OF CH4 AND ITS REACTION WITH CO2 OVER SUPPORTED RH CATALYSTS [J].
ERDOHELYI, A ;
CSERENYI, J ;
SOLYMOSI, F .
JOURNAL OF CATALYSIS, 1993, 141 (01) :287-299
[14]   THE ROLE OF CATALYST SUPPORT ON THE ACTIVITY OF NICKEL FOR REFORMING METHANE WITH CO2 [J].
GADALLA, AM ;
BOWER, B .
CHEMICAL ENGINEERING SCIENCE, 1988, 43 (11) :3049-3062
[15]   Characterization of carbonaceous species formed during reforming of CH4 with CO2 over Ni/CaO-Al2O3 catalysts studied by various transient techniques [J].
Goula, MA ;
Lemonidou, AA ;
Efstathiou, AM .
JOURNAL OF CATALYSIS, 1996, 161 (02) :626-640
[16]   CO2 reforming of CH4 over Ni perovskite catalysts prepared by solid phase crystallization method [J].
Hayakawa, T ;
Suzuki, S ;
Nakamura, J ;
Uchijima, T ;
Hamakawa, S ;
Suzuki, K ;
Shishido, T ;
Takehira, K .
APPLIED CATALYSIS A-GENERAL, 1999, 183 (02) :273-285
[17]   Characterization of Ca-promoted Ni/α-Al2O3 catalyst for CH4 reforming with CO2 [J].
Hou, ZY ;
Yokota, O ;
Tanaka, T ;
Yashima, T .
APPLIED CATALYSIS A-GENERAL, 2003, 253 (02) :381-387
[18]   Catalytic activity and characterization of Ni/Al2O3 and NiK/Al2O3 catalysts for CO2 methane reforming [J].
Juan-Juan, J ;
Román-Martínez, MC ;
Illán-Gómez, MJ .
APPLIED CATALYSIS A-GENERAL, 2004, 264 (02) :169-174
[19]   HYDROCARBON FORMATION FROM METHANE BY A LOW-TEMPERATURE 2-STEP REACTION SEQUENCE [J].
KOERTS, T ;
DEELEN, MJAG ;
VANSANTEN, RA .
JOURNAL OF CATALYSIS, 1992, 138 (01) :101-114
[20]   Carbon dioxide reforming of methane over 5 wt.% Ni/CaO-Al2O3 catalyst [J].
Lemonidou, AA ;
Vasalos, IA .
APPLIED CATALYSIS A-GENERAL, 2002, 228 (1-2) :227-235