Magnetic nanoparticle heating efficiency reveals magneto-structural differences when characterized with wide ranging and high amplitude alternating magnetic fields

被引:126
作者
Bordelon, David E. [1 ]
Cornejo, Christine [1 ]
Gruettner, Cordula [2 ]
Westphal, Fritz [2 ]
DeWeese, Theodore L. [1 ]
Ivkov, Robert [1 ]
机构
[1] Johns Hopkins Univ, Sch Med, Dept Radiat Oncol & Mol Radiat Sci, Baltimore, MD 21218 USA
[2] Micromod Partikeltechnol GmbH, Rostock, Germany
关键词
ABSORPTION RATES; CANCER-TREATMENT; HYPERTHERMIA; FLUID; INDUCTION; SIZE;
D O I
10.1063/1.3597820
中图分类号
O59 [应用物理学];
学科分类号
摘要
Magnetic nanoparticles can create heat that can be exploited to treat cancer when they are exposed to alternating magnetic fields (AMF). At a fixed frequency, the particle heating efficiency or specific power loss (SPL) depends upon the magnitude of the AMF. We characterized the amplitude-dependent SPL of three commercial dextran-iron oxide nanoparticle suspensions through saturation to 94 kA/m with a calorimeter comprising a solenoid coil that generates a uniform field to 100 kA/m at similar to 150 kHz. We also describe a novel method to empirically determine the appropriate range of the heating curve from which the SPL is then calculated. These results agree with SPL values calculated from the phenomenological Box-Lucas equation. We note that the amplitude-dependent SPL among the samples was markedly different, indicating significant magneto-structural variation not anticipated by current models. (C) 2011 American Institute of Physics. [doi:10.1063/1.3597820]
引用
收藏
页数:8
相关论文
共 38 条
[1]   Heating efficiency of magnetite particles exposed to AC magnetic field [J].
Atsumi, Takashi ;
Jeyadevan, Balachandran ;
Sato, Yoshinori ;
Tohji, Kazuyuki .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) :2841-2843
[2]   Determination of the Heating Effect of Magnetic Fluid in Alternating Magnetic Field [J].
Bekovic, Milos ;
Hamler, Anton .
IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (02) :552-555
[3]   Theoretical study of the magnetization dynamics of nondilute ferrofluids [J].
Berkov, D. V. ;
Iskakova, L. Yu. ;
Zubarev, A. Yu. .
PHYSICAL REVIEW E, 2009, 79 (02)
[4]  
Bordelon D., 2011, IEEE T MAGN UNPUB
[5]   Numerical FEM Models for the Planning of Magnetic Induction Hyperthermia Treatments With Nanoparticles [J].
Candeo, A. ;
Dughiero, F. .
IEEE TRANSACTIONS ON MAGNETICS, 2009, 45 (03) :1658-1661
[6]   Recent advances in iron oxide nanocrystal technology for medical imaging [J].
Corot, Claire ;
Robert, Philippe ;
Idee, Jean-Marc ;
Port, Marc .
ADVANCED DRUG DELIVERY REVIEWS, 2006, 58 (14) :1471-1504
[7]   Magnetic particle hyperthermia: Neel relaxation in magnetic nanoparticles under circularly polarized field [J].
de Chatel, P. F. ;
Nandori, I. ;
Hakl, J. ;
Meszaros, S. ;
Vad, K. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (12)
[8]   Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia [J].
Dennis, C. L. ;
Jackson, A. J. ;
Borchers, J. A. ;
Hoopes, P. J. ;
Strawbridge, R. ;
Foreman, A. R. ;
van Lierop, J. ;
Gruettner, C. ;
Ivkov, R. .
NANOTECHNOLOGY, 2009, 20 (39)
[9]  
Dormann JL, 1997, ADV CHEM PHYS, V98, P283, DOI 10.1002/9780470141571.ch4
[10]   Size and concentration effects on high frequency hysteresis of iron oxide nanoparticles [J].
Eggeman, Alexander S. ;
Majetich, Sara A. ;
Farrell, Dorothy ;
Pankhurst, Quentin A. .
IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (06) :2451-2453