pH alterations "reset" Ca2+ sensitivity of brain Na+ channel 2, a degenerin/epithelial Na+ ion channel, in planar lipid bilayers

被引:19
作者
Berdiev, BK
Mapstone, TB
Markert, JM
Gillespie, GY
Lockhart, J
Fuller, CM
Benos, DJ
机构
[1] Univ Alabama Birmingham, Dept Physiol & Biophys, Birmingham, AL 35294 USA
[2] Univ Alabama Birmingham, Dept Surg, Birmingham, AL 35294 USA
[3] Emory Univ, Dept Neurosurg, Atlanta, GA 30322 USA
关键词
D O I
10.1074/jbc.M107266200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Members of the degenerin/epithelial Na+ channel superfamily of ion channels subserve many functions, ranging from whole body sodium handling to mechanoelectrical transduction. We studied brain Na+ channel 2 (BNaC-2) in planar lipid bilayers to examine its single channel properties and regulation by Ca2+. Upon incorporation of vesicles made from membranes of oocytes expressing either wild-type (WT) BNaC-2 or BNaC-2 with a gain-of-function (GF) point mutation (G433F), functional channels with different properties were obtained. WT BNaC-2 resided in a closed state with short openings, whereas GF BNaC-2 was constitutively activated; a decrease in the pH in the trans compartment of the bilayer activated WT BNaC-2 and decreased its permeability for Na+ over K+. Moreover, these maneuvers made the WT channel more resistant to amiloride. In contrast, GF BNaC-2 did not respond to a decrease in pH, and its amiloride sensitivity and selectivity for Na+ over K+ were unaffected by this pH change. Buffering the bathing solutions with EGTA to reduce the free [Ca2+] to < 10 nm increased WT single channel open probability 10-fold, but not that of GF BNaC-2. Ca2+ blocked both WT and GF BNaC-2 in a dose- and voltage-dependent fashion; single channel conductances were unchanged. A drop in pH reduced the ability of Ca2+ to inhibit these channels. These results show that BNaC-2 is an amiloride-sensitive sodium channel and suggest that pH activation of these channels could be, in part, a consequence of H+ "interference" with channel regulation by Ca2+.
引用
收藏
页码:38755 / 38761
页数:7
相关论文
共 78 条
[11]   Actin modifies Ca2+ block of epithelial Na+ channels in planar lipid bilayers [J].
Berdiev, BK ;
Latorre, R ;
Benos, DJ ;
Ismailov, II .
BIOPHYSICAL JOURNAL, 2001, 80 (05) :2176-2186
[12]  
Berdiev BK, 1999, CURR TOP MEMBR, V47, P351
[13]   Regulation of epithelial sodium channels by short actin filaments [J].
Berdiev, BK ;
Prat, AG ;
Cantiello, HF ;
Ausiello, DA ;
Fuller, CM ;
Jovov, B ;
Benos, DJ ;
Ismailov, II .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (30) :17704-17710
[14]   BOUND AND DETERMINED - A COMPUTER-PROGRAM FOR MAKING BUFFERS OF DEFINED ION CONCENTRATIONS [J].
BROOKS, SPJ ;
STOREY, KB .
ANALYTICAL BIOCHEMISTRY, 1992, 201 (01) :119-126
[15]   Malignant human gliomas express an amiloride-sensitive Na+ conductance [J].
Bubien, JK ;
Keeton, DA ;
Fuller, CM ;
Gillespie, GY ;
Reddy, AT ;
Mapstone, TB ;
Benos, DJ .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1999, 276 (06) :C1405-C1410
[16]   EPITHELIAL SODIUM-CHANNEL RELATED TO PROTEINS INVOLVED IN NEURODEGENERATION [J].
CANESSA, CM ;
HORISBERGER, JD ;
ROSSIER, BC .
NATURE, 1993, 361 (6411) :467-470
[17]   THE IDENTIFICATION AND SUPPRESSION OF INHERITED NEURODEGENERATION IN CAENORHABDITIS-ELEGANS [J].
CHALFIE, M ;
WOLINSKY, E .
NATURE, 1990, 345 (6274) :410-416
[18]   Mutations causing neurodegeneration in Caenorhabditis elegans drastically alter the pH sensitivity and inactivation of the mammalian H+-gated Na+ channel MDEG1 [J].
Champigny, G ;
Voilley, N ;
Waldmann, R ;
Lazdunski, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (25) :15418-15422
[19]   Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1 [J].
Chang, SS ;
Grunder, S ;
Hanukoglu, A ;
Rosler, A ;
Mathew, PM ;
Hanukoglu, I ;
Schild, L ;
Lu, Y ;
Shimkets, RA ;
NelsonWilliams, C ;
Rossier, BC ;
Lifton, RP .
NATURE GENETICS, 1996, 12 (03) :248-253
[20]   A sensory neuron-specific, proton-gated ion channel [J].
Chen, CC ;
England, S ;
Akopian, AN ;
Wood, JN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (17) :10240-10245