Research progress on polymer-inorganic thermoelectric nanocomposite materials

被引:432
作者
Du, Yong [1 ,2 ]
Shen, Shirley Z. [1 ]
Cai, Kefeng [2 ]
Casey, Philip S. [1 ]
机构
[1] CSIRO, Mat Sci & Engn Div, Clayton, Vic 3169, Australia
[2] Tongji Univ, Funct Mat Res Lab, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
Conductive polymer; Nanocomposites; Seebeck coefficient; Electrical conductivity; Thermal conductivity; QUANTUM-WELL STRUCTURES; ELECTRICAL-CONDUCTIVITY; SEEBECK COEFFICIENT; TRANSPORT-PROPERTIES; POLYANILINE FILMS; POWER; PERFORMANCE; FIGURE; POLYPYRROLE; TTF;
D O I
10.1016/j.progpolymsci.2011.11.003
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A thermoelectric (TE) material is a material where a potential difference is generated as a result of a temperature difference or the corollary of this where a temperature difference is generated when a voltage is applied. These phenomena can be used to generate electricity and/or control temperature. Traditionally, thermoelectric materials are inorganic semiconductors which have been limited in their application by low efficiency and high cost. Since the 1990s, both theoretical and experimental studies have shown that low-dimensional TE materials, such as superlattices and nanowires, can enhance the value of the TE figure of merit (ZT) which is an indicator of TE thermodynamic efficiency. To date it has not been feasible to apply these materials in large-scale energy-conversion processes because of limitations in both their heat transfer efficiency and cost. When compared to inorganic materials, organic conducting polymers possess some unique features, such as low density, low cost, low thermal conductivity, easy synthesis and versatile processability and their use in preparing polymer-inorganic TE nanocomposites appears to have great potential for producing relatively low cost and high-performance TE materials. Recently, an increasing number of studies have reported on polymeric and polymer-inorganic TE nanocomposite materials. The purpose of this paper is to review the research progress on the conducting polymers and their corresponding TE nanocomposites. Its main focus is the TE nanocomposites based on conducting polymers such as polyaniline (PANI), polythiophene (PTH), poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT:PSS), as well as other polymers such as polyacetylene (PA), polypyrrole (PPY), polycarbazoles (PC) and polyphenylenevinylene (PPV). Typically, polymer-inorganic TE nanocomposites are produced by physical mixing, solution mixing and in situ polymerization. The key factors that limit the use of these polymers and their polymer-inorganic TE nanocomposites as TE materials are their low ZT values. More recent developments designed to overcome the limitation including, for example, the use of carbon nanotubes and graphenes and the use of computational modelling to accelerate the selection of suitable pairs of conductive polymer and inorganic TE materials to achieve best possible nanocomposites are reviewed. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:820 / 841
页数:22
相关论文
共 123 条
[1]   Electrical and Thermoelectric Properties of Poly(2,7-Carbazole) Derivatives [J].
Aich, Reda Badrou ;
Blouin, Nicolas ;
Bouchard, Angelique ;
Leclerc, Mario .
CHEMISTRY OF MATERIALS, 2009, 21 (04) :751-757
[2]   Preparation of Conducting Polyaniline-Bismuth Nanoparticle Composites by Planetary Ball Milling [J].
Anno, H. ;
Fukamoto, M. ;
Heta, Y. ;
Koga, K. ;
Itahara, H. ;
Asahi, R. ;
Satomura, R. ;
Sannomiya, M. ;
Toshima, N. .
JOURNAL OF ELECTRONIC MATERIALS, 2009, 38 (07) :1443-1449
[3]  
[Anonymous], 20 INT C THERM
[4]   Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J].
Bell, Lon E. .
SCIENCE, 2008, 321 (5895) :1457-1461
[5]   Progress in preparation, processing and applications of polyaniline [J].
Bhadra, Sambhu ;
Khastgir, Dipak ;
Singha, Nikhil K. ;
Lee, Joong Hee .
PROGRESS IN POLYMER SCIENCE, 2009, 34 (08) :783-810
[6]   Silicon nanowires as efficient thermoelectric materials [J].
Boukai, Akram I. ;
Bunimovich, Yuri ;
Tahir-Kheli, Jamil ;
Yu, Jen-Kan ;
Goddard, William A., III ;
Heath, James R. .
NATURE, 2008, 451 (7175) :168-171
[7]  
Bubnova O, 2011, NAT MATER, V10, P429, DOI [10.1038/NMAT3012, 10.1038/nmat3012]
[8]  
Cai KF, 2011, C MECH IND MAN ENG M, P462
[9]   Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure [J].
Cao, Y. Q. ;
Zhao, X. B. ;
Zhu, T. J. ;
Zhang, X. B. ;
Tu, J. P. .
APPLIED PHYSICS LETTERS, 2008, 92 (14)
[10]   The Thermoelectric Performance of Poly(3,4-ethylenedi oxythiophene)/Poly(4-styrenesulfonate) Thin Films [J].
Chang, Kuei-Chien ;
Jeng, Ming-Shan ;
Yang, Chang-Chung ;
Chou, Ya-Wen ;
Wu, Shih-Kuo ;
Thomas, Marin Andrew ;
Peng, Yen-Chun .
JOURNAL OF ELECTRONIC MATERIALS, 2009, 38 (07) :1182-1188