Construction of best Bregman approximations in reflexive Banach spaces

被引:61
作者
Bauschke, HH [1 ]
Combettes, PL
机构
[1] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
[2] Univ Paris 06, Lab Jacques Louis Lions, F-75005 Paris, France
关键词
best approximation; Bregman distance; decomposition; Haugazeau;
D O I
10.1090/S0002-9939-03-07050-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An iterative method is proposed to construct the Bregman projection of a point onto a countable intersection of closed convex sets in a reflexive Banach space.
引用
收藏
页码:3757 / 3766
页数:10
相关论文
共 24 条
[1]  
[Anonymous], 1985, NONLINEAR FUNCTIONAL
[2]   A weak-to-strong convergence principle for Fejer-monotone methods in Hilbert spaces [J].
Bauschke, HH ;
Combettes, PL .
MATHEMATICS OF OPERATIONS RESEARCH, 2001, 26 (02) :248-264
[3]   Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces [J].
Bauschke, HH ;
Borwein, JM ;
Combettes, PL .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2001, 3 (04) :615-647
[4]  
BAUSCHKE HH, IN PRESS SIAM J CONT
[5]  
Bauschke HH., 2000, OPTIMIZATION, V48, P409
[6]   ON CONVEX-FUNCTIONS HAVING POINTS OF GATEAUX DIFFERENTIABILITY WHICH ARE NOT POINTS OF FRECHET DIFFERENTIABILITY [J].
BORWEIN, JM ;
FABIAN, M .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1993, 45 (06) :1121-1134
[7]  
Boyle J. P., 1986, Advances in Order Restricted Statistical Inference, P28, DOI DOI 10.1007/978-1-4613-9940-7_3
[8]  
Bregman LM, 1999, J CONVEX ANAL, V6, P319
[9]  
BREGMAN LM, 2002, FINDING PROJECTION P
[10]  
Butnariu D., 2000, Applied optimization, V40