Adaptive Classification for Hyperspectral Image Data Using Manifold Regularization Kernel Machines

被引:79
作者
Kim, Wonkook [1 ]
Crawford, Melba M.
机构
[1] Purdue Univ, Sch Civil Engn, W Lafayette, IN 47907 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2010年 / 48卷 / 11期
基金
美国国家科学基金会;
关键词
Adaptive classifier; hyperspectral; kernel machine; knowledge transfer; manifold regularization; SUPPORT VECTOR MACHINES; REMOTE-SENSING IMAGES; SEMISUPERVISED CLASSIFICATION; SVM; TREE; SET;
D O I
10.1109/TGRS.2010.2076287
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Localized training data typically utilized to develop a classifier may not be fully representative of class signatures over large areas but could potentially provide useful information which can be updated to reflect local conditions in other areas. An adaptive classification framework is proposed for this purpose, whereby a kernel machine is first trained with labeled data and then iteratively adapted to new data using manifold regularization. Assuming that no class labels are available for the data for which spectral drift may have occurred, resemblance associated with the clustering condition on the data manifold is used to bridge the change in spectra between the two data sets. Experiments are conducted using spatially disjoint data in EO-1 Hyperion images, and the results of the proposed framework are compared to semisupervised kernel machines.
引用
收藏
页码:4110 / 4121
页数:12
相关论文
共 40 条
  • [1] [Anonymous], 2004, Neural Inf. Process.- Lett.Rev.
  • [2] THEORY OF REPRODUCING KERNELS
    ARONSZAJN, N
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 68 (MAY) : 337 - 404
  • [3] Belkin M, 2006, J MACH LEARN RES, V7, P2399
  • [4] Bennett KP, 1999, ADV NEUR IN, V11, P368
  • [5] Unsupervised retraining of a maximum likelihood classifier for the analysis of multitemporal remote sensing images
    Bruzzone, L
    Prieto, DF
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (02): : 456 - 460
  • [6] A novel transductive SVM for semisupervised classification of remote-sensing images
    Bruzzone, Lorenzo
    Chi, Mingmin
    Marconcini, Mattia
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (11): : 3363 - 3373
  • [7] Toward the Automatic Updating of Land-Cover Maps by a Domain-Adaptation SVM Classifier and a Circular Validation Strategy
    Bruzzone, Lorenzo
    Marconcini, Mattia
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (04): : 1108 - 1122
  • [8] Robust support vector method for hyperspectral data classification and knowledge discovery
    Camps-Valls, G
    Gómez-Chova, L
    Calpe-Maravilla, J
    Martín-Guerrero, JD
    Soria-Olivas, E
    Alonso-Chordá, L
    Moreno, J
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (07): : 1530 - 1542
  • [9] Semi-supervised graph-based hyperspectral image classification
    Camps-Valls, Gustavo
    Bandos, Tatyana V.
    Zhou, Dengyong
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (10): : 3044 - 3054
  • [10] Choosing multiple parameters for support vector machines
    Chapelle, O
    Vapnik, V
    Bousquet, O
    Mukherjee, S
    [J]. MACHINE LEARNING, 2002, 46 (1-3) : 131 - 159