The physics of snow crystals

被引:432
作者
Libbrecht, KG [1 ]
机构
[1] CALTECH, Norman Bridge Lab Phys, Pasadena, CA 91125 USA
关键词
D O I
10.1088/0034-4885/68/4/R03
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We examine the physical mechanisms governing the formation of snow crystals, treating this problem as a case study of the dynamics of crystal growth from the vapour phase. Particular attention is given to the basic theoretical underpinnings of the subject, especially the interplay of particle diffusion, heat diffusion and surface attachment kinetics during crystal growth, as well as growth instabilities that have important effects on snow crystal development. The first part of this review focuses on understanding the dramatic variations seen in snow crystal morphology as a function of temperature, a mystery that has remained largely unsolved since its discovery 75 years ago. To this end we examine the growth of simple hexagonal ice prisms in considerable detail, comparing crystal growth theory with laboratory measurements of growth rates under a broad range of conditions. This turns out to be a surprisingly rich problem, which ultimately originates from the unusual molecular structure of the ice surface and its sensitive dependence on temperature. With new clues from precision measurements of attachment kinetics, we are now just beginning to understand these structural changes at the ice surface and how they affect the crystal growth process. We also touch upon the mostly unexplored topic of how dilute chemical impurities can greatly alter the growth of snow crystals. The second part of this review examines pattern formation in snow crystals, with special emphasis on the growth of snow crystal dendrites. Again we treat this as a case study of the more general problem of dendritic growth during diffusion-limited solidification. Since snow crystals grow from the vapour, we can apply dendrite theory in the simplified slow-growth limit where attachment kinetics dominates over capillarity in selecting the tip velocity. Although faceting is quite pronounced in these structures, many aspects of the formation of snow crystal dendrites are fairly well described using a theoretical treatment that does not explicitly incorporate faceting. We also describe electrically modified ice dendrite growth, which produces some novel needle-like structures.
引用
收藏
页码:855 / 895
页数:41
相关论文
共 122 条
[61]  
KOBAYASHI T, 1966, C PHYS SNOW IC SAPP, P95
[62]   SURFACE MELTING OF THE (0001) FACE OF TIP4P ICE [J].
KROES, GJ .
SURFACE SCIENCE, 1992, 275 (03) :365-382
[63]   GROWTH-KINETICS OF ICE FROM THE VAPOR-PHASE AND ITS GROWTH FORMS [J].
KURODA, T ;
LACMANN, R .
JOURNAL OF CRYSTAL GROWTH, 1982, 56 (01) :189-205
[64]  
Lacmann R., 1972, Journal of Crystal Growth, V13-14, P236, DOI 10.1016/0022-0248(72)90161-3
[65]   INSTABILITIES AND PATTERN-FORMATION IN CRYSTAL-GROWTH [J].
LANGER, JS .
REVIEWS OF MODERN PHYSICS, 1980, 52 (01) :1-28
[66]  
LIBBRECHT K, 2004, LITTLE BOOK SNOWFLAK
[67]  
LIBBRECHT K, 2003, SNOWFLAKE WINTERS SE
[68]   Electrically induced morphological instabilities in free dendrite growth [J].
Libbrecht, KG ;
Tanusheva, VM .
PHYSICAL REVIEW LETTERS, 1998, 81 (01) :176-179
[69]   Explaining the formation of thin ice crystal plates with structure-dependent attachment kinetics [J].
Libbrecht, KG .
JOURNAL OF CRYSTAL GROWTH, 2003, 258 (1-2) :168-175
[70]   Growth rates of the principal facets of ice between-10°C and-40°C [J].
Libbrecht, KG .
JOURNAL OF CRYSTAL GROWTH, 2003, 247 (3-4) :530-540