Inequivalence of ensembles in a system with long-range Interactions -: art. no. 030601

被引:238
作者
Barré, J
Mukamel, D
Ruffo, S
机构
[1] Univ Florence, Dipartimento Energet Sergio Stecco, I-50139 Florence, Italy
[2] Ecole Normale Super Lyon, Phys Lab, F-69364 Lyon 07, France
[3] Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, Israel
[4] INFM, Florence, Italy
[5] Ist Nazl Fis Nucl, I-50125 Florence, Italy
关键词
D O I
10.1103/PhysRevLett.87.030601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the global phase diagram of the Infinite-range Blume-Emery-Griffiths model both in the canonical and in the microcanonical ensembles. The canonical phase diagram shows first-order and continuous transition lines separated by a tricritical point. We find that below the tricritical point, when the canonical transition is first order, the phase diagrams of the two ensembles disagree. In this region the microcanonical ensemble exhibits energy ranges with negative specific heat and temperature jumps at transition energies. These results can be extended to weakly decaying nonintegrable interactions.
引用
收藏
页码:30601 / 1
页数:4
相关论文
共 24 条
[11]   SOLUBLE MODEL FOR A SYSTEM WITH NEGATIVE SPECIFIC HEAT [J].
HERTEL, P ;
THIRRING, W .
ANNALS OF PHYSICS, 1971, 63 (02) :520-&
[12]   FINITE-SIZE-SCALING AT 1ST-ORDER PHASE-TRANSITIONS [J].
HULLER, A .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1994, 95 (01) :63-66
[13]   On first-order phase transitions in microcanonical and canonical non-extensive systems [J].
Ispolatov, I ;
Cohen, EGD .
PHYSICA A, 2001, 295 (3-4) :475-487
[14]   ON VAN DER WAALS THEORY OF VAPOR-LIQUID EQUILIBRIUM .1. DISCUSSION OF A 1-DIMENSIONAL MODEL [J].
KAC, M ;
HEMMER, PC ;
UHLENBECK, GE .
JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (02) :216-&
[15]   Negative specific heat in astronomy, physics and chemistry [J].
Lynden-Bell, D .
PHYSICA A, 1999, 263 (1-4) :293-304
[16]   GRAVO-THERMAL CATASTROPHE IN ISOTHERMAL SPHERES AND ONSET OF RED-GIANT STRUCTURE FOR STELLAR SYSTEMS [J].
LYNDENBELL, D ;
WOOD, R .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1968, 138 (04) :495-+
[17]  
LYNDENBELL RM, 1996, GRAVITATIONAL DYNAMI
[18]   STATISTICAL-MECHANICS OF GRAVITATING SYSTEMS [J].
PADMANABHAN, T .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 188 (05) :285-362
[19]  
RUELLE D, 1963, HELV PHYS ACTA, V36, P183
[20]   Rotators with long-range interactions: Connection with the mean-field approximation [J].
Tamarit, F ;
Anteneodo, C .
PHYSICAL REVIEW LETTERS, 2000, 84 (02) :208-211