Synthesis and growth mechanism of Bi2S3 nanoribbons

被引:172
作者
Liu, ZP
Liang, JB
Li, S
Peng, S
Qian, Y [1 ]
机构
[1] Univ Sci & Technol China, Struct Res Lab, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Chem, Hefei 230026, Anhui, Peoples R China
关键词
bismuth; crystal growth; nanostructures; solvothermal synthesis; sulfide;
D O I
10.1002/chem.200305481
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This article describes a facile solvothermal method by using mixed solvents for the large-scale synthesis of Bi2S3 nanoribbons with lengths of up to several millimeters. These nanoribbons were formed by a solvothermal reaction between Bi-III-glycerol complexes and various sulfur sources in a mixed solution of aqueous NaOH and glycerol. HRTEM (high-resolution transmission electron microscopy) and SAED (selective-area electron diffraction) studies show that the as-synthesized nanoribbons had predominately grown along the [001] direction. The Bi2S3 nanoribbons prepared by the use of different sulfur sources have a common formation process: the initial formation of NaBiS2 polycrystals, which serve as the precursors to Bi2S3, the decomposition of NaBiS2, and the formation of Bi2S3 seeds in the solution through a homogeneous nucleation process; the growth of Bi2S3 nanoribbons occurs at the expense of NaBiS2 materials. The growth mechanism of millimeter-scale nanoribbons involves a special solid-solution-solid transformation as well as an Ostwald ripening process. Some crucial factors affect nanoribbon growth, such as, solvothermal temperature, volume ratio of glycerol to water, and the concentration of NaOH; these have also been discussed.
引用
收藏
页码:634 / 640
页数:7
相关论文
共 34 条
[1]   GROWTH AND MICROHARDNESS STUDIES OF CHALCOGENIDES OF ARSENIC, ANTIMONY AND BISMUTH [J].
ARIVUOLI, D ;
GNANAM, FD ;
RAMASAMY, P .
JOURNAL OF MATERIALS SCIENCE LETTERS, 1988, 7 (07) :711-713
[2]   ELECTRICAL AND OPTICAL PROPERTIES OF SOME M2V-BN3VI-B SEMICONDUCTORS [J].
BLACK, J ;
CONWELL, EM ;
SEIGLE, L ;
SPENCER, CW .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1957, 2 (03) :240-251
[3]   Tris(benzylthiolato)bismuth.: Efficient precursor to phase-pure polycrystalline Bi2S3 [J].
Boudjouk, P ;
Remington, MP ;
Grier, DG ;
Jarabek, BR ;
McCarthy, GJ .
INORGANIC CHEMISTRY, 1998, 37 (14) :3538-3541
[4]   HIGH-RATE, GAS-PHASE GROWTH OF MOS2 NESTED INORGANIC FULLERENES AND NANOTUBES [J].
FELDMAN, Y ;
WASSERMAN, E ;
SROLOVITZ, DJ ;
TENNE, R .
SCIENCE, 1995, 267 (5195) :222-225
[5]  
Gates B, 2002, ADV FUNCT MATER, V12, P219, DOI 10.1002/1616-3028(200203)12:3<219::AID-ADFM219>3.0.CO
[6]  
2-U
[7]  
GU YD, 1989, CHEM DICT, P634
[8]   Room-temperature ultraviolet nanowire nanolasers [J].
Huang, MH ;
Mao, S ;
Feick, H ;
Yan, HQ ;
Wu, YY ;
Kind, H ;
Weber, E ;
Russo, R ;
Yang, PD .
SCIENCE, 2001, 292 (5523) :1897-1899
[9]   Directed assembly of one-dimensional nanostructures into functional networks [J].
Huang, Y ;
Duan, XF ;
Wei, QQ ;
Lieber, CM .
SCIENCE, 2001, 291 (5504) :630-633
[10]   Room-temperature synthesis of copper and silver, nanocrystalline chalcogenides in mixed solvents [J].
Jiang, Y ;
Xie, B ;
Wu, J ;
Yuan, SW ;
Wu, Y ;
Huang, H ;
Qian, YT .
JOURNAL OF SOLID STATE CHEMISTRY, 2002, 167 (01) :28-33