Roles of His-79 and Tyr-180 of D-xylose/dihydrodiol dehydrogenase in catalytic function

被引:13
作者
Asada, Y [1 ]
Aoki, S [1 ]
Ishikura, S [1 ]
Usami, N [1 ]
Hara, A [1 ]
机构
[1] Gifu Pharmaceut Univ, Biochem Lab, Gifu, Japan
关键词
dihydrodiol dehydrogenase; glucose-fructose oxidoreductase; catalytic residue; coenzyme binding; ionic strength; fluorescence energy transfer; protein family;
D O I
10.1006/bbrc.2000.3796
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mammalian dimeric dihydrodiol dehydrogenase is identical with D-xylose dehydrogenase and belongs to a protein family with prokaryotic proteins including glucose-fructose oxidoreductase. Of the conserved residues in this family, either His-79 or Tyr-180 of D-xylose/dihydrodiol dehydrogenase has been proposed to be involved in the catalytic function. Site-directed mutagenesis was used to examine the roles of the two residues of the monkey enzyme. A mutant, Y180F, was almost inactive, but, similarly to the wildtype enzyme, exhibited high affinity for NADP(H) and fluorescence energy transfer upon binding of NADPH. The H79Q mutation had kinetically largest effects on K-d (>7-fold increase) and K-m (>25-fold increase) for NADP(H), and eliminated the fluorescence energy transfer. Interestingly, the dehydrogenase activity of this mutant was potently inhibited with a 190-fold increase in the K-m for NADP(+) by high ionic strength, which activated the activity of the wild-type enzyme. These results suggest a critical role of Tyr-180 in the catalytic function of this class of enzymes, in addition to functions of His-79 in the coenzyme binding and chemical steps of the reaction. (C) 2000 Academic Press.
引用
收藏
页码:333 / 337
页数:5
相关论文
共 23 条