Experimental one-way quantum computing

被引:1026
作者
Walther, P
Resch, KJ
Rudolph, T
Schenck, E
Weinfurter, H
Vedral, V
Aspelmeyer, M
Zeilinger, A
机构
[1] Univ Vienna, Inst Expt Phys, A-1090 Vienna, Austria
[2] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, QOLS, London SW7 2BW, England
[3] Univ Munich, Dept Phys, D-80799 Munich, Germany
[4] Max Planck Inst Quantum Opt, D-85741 Garching, Germany
[5] Erwin Schrodinger Inst Math Phys, A-1090 Vienna, Austria
[6] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
[7] Austrian Acad Sci, IQOQI, A-1090 Vienna, Austria
[8] Ecole Normale Super, F-75005 Paris, France
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1038/nature03347
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Standard quantum computation is based on sequences of unitary quantum logic gates that process qubits. The one-way quantum computer proposed by Raussendorf and Briegel is entirely different. It has changed our understanding of the requirements for quantum computation and more generally how we think about quantum physics. This new model requires qubits to be initialized in a highly entangled cluster state. From this point, the quantum computation proceeds by a sequence of single-qubit measurements with classical feedforward of their outcomes. Because of the essential role of measurement, a one-way quantum computer is irreversible. In the one-way quantum computer, the order and choices of measurements determine the algorithm computed. We have experimentally realized four-qubit cluster states encoded into the polarization state of four photons. We characterize the quantum state fully by implementing experimental four-qubit quantum state tomography. Using this cluster state, we demonstrate the feasibility of one-way quantum computing through a universal set of one-and two-qubit operations. Finally, our implementation of Grover's search algorithm demonstrates that one-way quantum computation is ideally suited for such tasks.
引用
收藏
页码:169 / 176
页数:8
相关论文
共 50 条
[1]   Information storage and retrieval through quantum phase [J].
Ahn, J ;
Weinacht, TC ;
Bucksbaum, PH .
SCIENCE, 2000, 287 (5452) :463-465
[2]  
[Anonymous], 1992, NASA C PUBLICATION
[3]   Maximum-likelihood estimation of the density matrix [J].
Banaszek, K ;
D'Ariano, GM ;
Paris, MGA ;
Sacchi, MF .
PHYSICAL REVIEW A, 2000, 61 (01) :4
[4]   Quantum information and computation [J].
Bennett, CH ;
DiVincenzo, DP .
NATURE, 2000, 404 (6775) :247-255
[5]   Implementation of quantum search algorithm using classical Fourier optics [J].
Bhattacharya, N ;
van den Heuvell, HBV ;
Spreeuw, RJC .
PHYSICAL REVIEW LETTERS, 2002, 88 (13) :1379011-1379014
[6]   Quantum computing without entanglement [J].
Biham, E ;
Brassard, G ;
Kenigsberg, D ;
Mor, T .
THEORETICAL COMPUTER SCIENCE, 2004, 320 (01) :15-33
[7]  
Braunstein S, 2000, FORTSCHR PHYS, V48, P767
[8]   Persistent entanglement in arrays of interacting particles [J].
Briegel, HJ ;
Raussendorf, R .
PHYSICAL REVIEW LETTERS, 2001, 86 (05) :910-913
[9]  
BROWN DE, 2004, EFFICIENT LINEAR OPT
[10]  
Chuang IL, 1997, J MOD OPTIC, V44, P2455, DOI 10.1080/095003497152609