Persistent entanglement in arrays of interacting particles

被引:1613
作者
Briegel, HJ [1 ]
Raussendorf, R [1 ]
机构
[1] Univ Munich, Sekt Phys, D-80333 Munich, Germany
关键词
D O I
10.1103/PhysRevLett.86.910
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the entanglement properties of a class of N-qubit quantum states that are generated in arrays of qubits with an Ising-type interaction. These states contain a large amount of entanglement as given by their Schmidt measure. They also have a high persistency of entanglement which means that similar toN/2 qubits have to he measured to disentangle the state. These states can be regarded as an entanglement resource since one can generate a family of other multiparticle entangled states such as the generalized Greenberger-Horne-Zeilinger states of <N/2 qubits by simple measurements and classical communication.
引用
收藏
页码:910 / 913
页数:4
相关论文
共 19 条
[1]   Generalized Schmidt decomposition and classification of three-quantum-bit states [J].
Acín, A ;
Andrianov, A ;
Costa, L ;
Jané, E ;
Latorre, JI ;
Tarrach, R .
PHYSICAL REVIEW LETTERS, 2000, 85 (07) :1560-1563
[2]   Concentrating partial entanglement by local operations [J].
Bennett, CH ;
Bernstein, HJ ;
Popescu, S ;
Schumacher, B .
PHYSICAL REVIEW A, 1996, 53 (04) :2046-2052
[3]  
BOUWMEESTER D, 2000, PHYSICS QUANTUM IMFO
[4]  
BOUWMEESTER D, 2000, PHYSICS QUANTUM INFO
[5]   Quantum logic gates in optical lattices [J].
Brennen, GK ;
Caves, CM ;
Jessen, PS ;
Deutsch, IH .
PHYSICAL REVIEW LETTERS, 1999, 82 (05) :1060-1063
[6]   Classification of multiqubit mixed states:: Separability and distillability properties -: art. no. 042314 [J].
Dür, W ;
Cirac, JI .
PHYSICAL REVIEW A, 2000, 61 (04) :11-423141
[7]   Separability and distillability of multiparticle quantum systems [J].
Dür, W ;
Cirac, JI ;
Tarrach, R .
PHYSICAL REVIEW LETTERS, 1999, 83 (17) :3562-3565
[8]  
EISERT J, QUANTPH0007081
[9]   Bell inequality, Bell states and maximally entangled states for n qubits [J].
Gisin, N ;
Bechmann-Pasquinucci, H .
PHYSICS LETTERS A, 1998, 246 (1-2) :1-6
[10]   BELL THEOREM WITHOUT INEQUALITIES [J].
GREENBERGER, DM ;
HORNE, MA ;
SHIMONY, A ;
ZEILINGER, A .
AMERICAN JOURNAL OF PHYSICS, 1990, 58 (12) :1131-1143