Robust optimal quantum gates for josephson charge qubits

被引:113
作者
Montangero, Simone
Calarco, Tommaso
Fazio, Rosario
机构
[1] NEST CNR INFM, I-56126 Pisa, Italy
[2] Scuola Normale Super Pisa, I-56126 Pisa, Italy
[3] Univ Karlsruhe, Inst Theoret Festkorperphys, D-76128 Karlsruhe, Germany
[4] Univ Karlsruhe, DFG CFN, D-76128 Karlsruhe, Germany
[5] Harvard Univ, ITAMP, Cambridge, MA 02138 USA
[6] BEC CNR INFM, ECT, I-38050 Trento, Italy
[7] Univ Trent, I-38050 Trento, Italy
[8] SISSA, I-34014 Trieste, Italy
关键词
D O I
10.1103/PhysRevLett.99.170501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum optimal control theory allows us to design accurate quantum gates. We employ it to design high-fidelity two-bit gates for Josephson charge qubits in the presence of both leakage and noise. Our protocol considerably increases the fidelity of the gate and, more important, it is quite robust in the disruptive presence of 1/f noise. The improvement in the gate performances discussed in this work ( errors similar to 10(-3)-10(-4) in realistic cases) allows us to cross the fault tolerance threshold.
引用
收藏
页数:4
相关论文
共 40 条
[21]   Quantum oscillations in two coupled charge qubits [J].
Pashkin, YA ;
Yamamoto, T ;
Astafiev, O ;
Nakamura, Y ;
Averin, DV ;
Tsai, JS .
NATURE, 2003, 421 (6925) :823-826
[22]   OPTIMAL-CONTROL OF QUANTUM-MECHANICAL SYSTEMS - EXISTENCE, NUMERICAL APPROXIMATION, AND APPLICATIONS [J].
PEIRCE, AP ;
DAHLEH, MA ;
RABITZ, H .
PHYSICAL REVIEW A, 1988, 37 (12) :4950-4964
[23]   Protocol for universal gates in optimally biased superconducting qubits [J].
Rigetti, C ;
Blais, A ;
Devoret, M .
PHYSICAL REVIEW LETTERS, 2005, 94 (24)
[24]   Parametric control of a superconducting flux qubit [J].
Saito, S ;
Meno, T ;
Ueda, M ;
Tanaka, H ;
Semba, K ;
Takayanagi, H .
PHYSICAL REVIEW LETTERS, 2006, 96 (10)
[25]  
SCHULTEHERBRUGG.T, ARXIVQUANTPH0609037
[26]   Low- and high-frequency noise from coherent two-level systems -: art. no. 127002 [J].
Shnirman, A ;
Schön, G ;
Martin, I ;
Makhlin, Y .
PHYSICAL REVIEW LETTERS, 2005, 94 (12) :1-4
[27]   Quantum algorithms for Josephson networks [J].
Siewert, J ;
Fazio, R .
PHYSICAL REVIEW LETTERS, 2001, 87 (25) :257905-1
[28]   Loading a Bose-Einstein condensate onto an optical lattice: An application of optimal control theory to the nonlinear Schrodinger equation [J].
Sklarz, SE ;
Tannor, DJ .
PHYSICAL REVIEW A, 2002, 66 (05) :9
[29]   Optimal control of coupled Josephson qubits [J].
Spoerl, A. ;
Schulte-Herbrueggen, T. ;
Glaser, S. J. ;
Bergholm, V. ;
Storcz, M. J. ;
Ferber, J. ;
Wilhelm, F. K. .
PHYSICAL REVIEW A, 2007, 75 (01)
[30]   Measurement of the entanglement of two superconducting qubits via state tomography [J].
Steffen, Matthias ;
Ansmann, M. ;
Bialczak, Radoslaw C. ;
Katz, N. ;
Lucero, Erik ;
McDermott, R. ;
Neeley, Matthew ;
Weig, E. M. ;
Cleland, A. N. ;
Martinis, John M. .
SCIENCE, 2006, 313 (5792) :1423-1425