Rotationally invariant ab initio evaluation of Coulomb and exchange parameters for DFT+U calculations

被引:314
作者
Mosey, Nicholas J. [1 ,2 ]
Liao, Peilin [3 ]
Carter, Emily A. [1 ,2 ]
机构
[1] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
[2] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
[3] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1063/1.2943142
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Conventional density functional theory (DFT) fails for strongly correlated electron systems due to large intra-atomic self-interaction errors. The DFT+U method provides a means of overcoming these errors through the use of a parametrized potential that employs an exact treatment of quantum mechanical exchange interactions. The parameters that enter into this potential correspond to the spherically averaged intra-atomic Coulomb (U) and exchange (J) interactions. Recently, we developed an ab initio approach for evaluating these parameters on the basis of unrestricted Hartree-Fock (UHF) theory, which has the advantage of being free of self-interaction errors and does not require experimental input [Mosey and Carter, Phys. Rev. B 76, 155123 (2007)]. In this work, we build on that method to develop a more robust and convenient ab initio approach for evaluating U and J. The new technique employs a relationship between U and J and the Coulomb and exchange integrals evaluated using the entire set of UHF molecular orbitals (MOs) for the system. Employing the entire set of UHF MOs renders the method rotationally invariant and eliminates the difficulty in selecting unambiguously the MOs that correspond to localized states. These aspects overcome two significant deficiencies of our earlier method. The new technique is used to evaluate U and J for Cr2O3, FeO, and Fe2O3. The resulting values of U-J are close to empirical estimates of this quantity for each of these materials and are also similar to results of constrained DFT calculations. DFT+U calculations using the ab initio parameters yield results that are in good agreement with experiment. As such, this method offers a means of performing accurate and fully predictive DFT+U calculations of strongly correlated electron materials. (c) 2008 American Institute of Physics.
引用
收藏
页数:13
相关论文
共 63 条
[1]   BAND THEORY AND MOTT INSULATORS - HUBBARD-U INSTEAD OF STONER-I [J].
ANISIMOV, VI ;
ZAANEN, J ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1991, 44 (03) :943-954
[2]   DENSITY-FUNCTIONAL CALCULATION OF EFFECTIVE COULOMB INTERACTIONS IN METALS [J].
ANISIMOV, VI ;
GUNNARSSON, O .
PHYSICAL REVIEW B, 1991, 43 (10) :7570-7574
[3]   First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA+U method [J].
Anisimov, VI ;
Aryasetiawan, F ;
Lichtenstein, AI .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1997, 9 (04) :767-808
[4]   Atomic orbital Laplace-transformed second-order Moller-Plesset theory for periodic systems [J].
Ayala, PY ;
Kudin, KN ;
Scuseria, GE .
JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (21) :9698-9707
[5]   OPTICAL-ABSORPTION OF IRON-OXIDES [J].
BALBERG, I ;
PINCH, HL .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1978, 7 (1-4) :12-15
[6]   MAGNETIC-STRUCTURE OF NONSTOICHIOMETRIC FERROUS OXIDE [J].
BATTLE, PD ;
CHEETHAM, AK .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1979, 12 (02) :337-345
[7]   Implementation of the projector augmented-wave LDA+U method:: Application to the electronic structure of NiO [J].
Bengone, O ;
Alouani, M ;
Blöchl, P ;
Hugel, J .
PHYSICAL REVIEW B, 2000, 62 (24) :16392-16401
[8]   Multireference configuration interaction treatment of excited-state electron correlation in periodic systems:: the band structure of trans-polyacetylene [J].
Bezugly, V ;
Birkenheuer, U .
CHEMICAL PHYSICS LETTERS, 2004, 399 (1-3) :57-61
[9]   Kohn-Sham density functional theory: Predicting and understanding chemistry [J].
Bickelhaupt, FM ;
Baerends, EJ .
REVIEWS IN COMPUTATIONAL CHEMISTRY, VOL 15, 2000, 15 :1-86
[10]   FINITE ELASTIC STRAIN OF CUBIC CRYSTALS [J].
BIRCH, F .
PHYSICAL REVIEW, 1947, 71 (11) :809-824