Is nitrate reductase a major player in the plant NO (nitric oxide) game?

被引:104
作者
Meyer, C [1 ]
Lea, US
Provan, F
Kaiser, WM
Lillo, C
机构
[1] Inst Jean Pierre Bourgin, Unite Nutr Azotee Plantes, INRA, F-78026 Versailles, France
[2] Stavanger Univ Coll, Sch Sci & Technol, N-4068 Stavanger, Norway
[3] Univ Wurzburg, Julius von Sachs Inst Biowissensch, Lehrstuhl Mol Pflanzenphysiol & Biophys, D-97082 Wurzburg, Germany
关键词
abscisic acid; nitrate reductase; nitric oxide; nitric oxide synthase; nitrite; stomata;
D O I
10.1007/s11120-004-3548-3
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Nitric oxide (NO) is a diffusible, very reactive gas that is involved in the regulation of many processes in plants. Several enzymatic sources of NO production have been identified in recent years. Nitrate reductase (NR) is one of them and it has been shown that this well-known plant protein, apart from its role in nitrate reduction and assimilation, can also catalyse the reduction of nitrite to NO. This reaction can produce large amounts of NO, or at least more than is needed for signalling, as some escape of NO to the outside medium can be detected after NR activation. A role for NO and NR in stomata functioning in response to abscisic acid has also been proposed. The question that remains is whether this NR-derived NO is a signalling molecule or the mere product of an enzymatic side reaction like the products generated by the oxygenase activity of RuBisCO.
引用
收藏
页码:181 / 189
页数:9
相关论文
共 57 条
[1]   Apoplastic synthesis of nitric oxide by plant tissues [J].
Bethke, PC ;
Badger, MR ;
Jones, RL .
PLANT CELL, 2004, 16 (02) :332-341
[2]  
Botrel A, 1996, PLANT PHYSIOL BIOCH, V34, P645
[3]   NITRITE UPTAKE INTO INTACT PEA-CHLOROPLASTS .1. KINETICS AND RELATIONSHIP WITH NITRITE ASSIMILATION [J].
BRUNSWICK, P ;
CRESSWELL, CF .
PLANT PHYSIOLOGY, 1988, 86 (02) :378-383
[4]   Proteomic identification of plant proteins probed by mammalian nitric oxide synthase antibodies [J].
Butt, YKC ;
Lum, JHK ;
Lo, SCL .
PLANTA, 2003, 216 (05) :762-771
[5]   PURIFICATION AND KINETICS OF HIGHER PLANT NADH - NITRATE REDUCTASE [J].
CAMPBELL, WH ;
SMARRELLI, J .
PLANT PHYSIOLOGY, 1978, 61 (04) :611-616
[6]   Nitrate reductase structure, function and regulation: Bridging the gap between biochemistry and physiology [J].
Campbell, WH .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1999, 50 :277-+
[7]   RETRACTED: The pathogen-inducible nitric oxide synthase (iNOS) in plants is a variant of the P protein of the glycine decarboxylase complex (Retracted Article. See vol 119, pg 445, 2004) [J].
Chandok, MR ;
Ytterberg, AJ ;
van Wijk, KJ ;
Klessig, DF .
CELL, 2003, 113 (04) :469-482
[8]   NITRIC-OXIDE AND NITROUS-OXIDE PRODUCTION BY SOYBEAN AND WINGED BEAN DURING THE INVIVO NITRATE REDUCTASE ASSAY [J].
DEAN, JV ;
HARPER, JE .
PLANT PHYSIOLOGY, 1986, 82 (03) :718-723
[9]   THE CONVERSION OF NITRITE TO NITROGEN OXIDE(S) BY THE CONSTITUTIVE NAD(P)H-NITRATE REDUCTASE ENZYME FROM SOYBEAN [J].
DEAN, JV ;
HARPER, JE .
PLANT PHYSIOLOGY, 1988, 88 (02) :389-395
[10]   A new role for an old enzyme:: Nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana [J].
Desikan, R ;
Griffiths, R ;
Hancock, J ;
Neill, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (25) :16314-16318