Anomalous diffusion of a tracer advected by wave turbulence

被引:14
作者
Balk, AM [1 ]
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
基金
美国国家科学基金会;
关键词
passive advection; turbulent transport; wave turbulence; random waves; near-identity transformation; Green's function;
D O I
10.1016/S0375-9601(01)00014-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the advection of a passive tracer when the velocity field is a superposition of random waves. Green's function for the turbulent transport (turbulent diffusion and turbulent drift) is derived. This Grim's function is shown to imply sub-diffusive or super-diffusive behavior of the tracer. For the analysis we introduce the statistical near-identity transformation. The results are confirmed by numerical simulations. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:370 / 378
页数:9
相关论文
共 33 条
[1]   MATHEMATICAL-MODELS WITH EXACT RENORMALIZATION FOR TURBULENT TRANSPORT .2. FRACTAL INTERFACES, NON-GAUSSIAN STATISTICS AND THE SWEEPING EFFECT [J].
AVELLANEDA, M ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 146 (01) :139-204
[2]   MATHEMATICAL-MODELS WITH EXACT RENORMALIZATION FOR TURBULENT TRANSPORT [J].
AVELLANEDA, M ;
MAJDA, AJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 131 (02) :381-429
[3]  
Avellaneda M., 1996, LECT APPL MATH, V31, P251
[4]   Passive scalar in a random wave field: the weak turbulence approach [J].
Balk, AM ;
McLaughlin, RM .
PHYSICS LETTERS A, 1999, 256 (04) :299-306
[5]  
Batchelor G.K., 1956, SURVEYS MECH, P352
[6]   NONLINEAR INTERACTIONS OF RANDOM WAVES IN A DISPERSIVE MEDIUM [J].
BENNEY, DJ ;
SAFFMAN, PG .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1966, 289 (1418) :301-&
[7]  
BENNEY DJ, 1969, STUD APPL MATH, V48, P29
[8]  
Bogoliubov NN., 1961, Asymptotic methods in the theory of non-linear oscillations (In Russian)
[9]   Scalar intermittency and the ground state of periodic Schrodinger equations [J].
Bronski, JC ;
McLaughlin, RM .
PHYSICS OF FLUIDS, 1997, 9 (01) :181-190
[10]   Spectral bifurcations in dispersive wave turbulence [J].
Cai, D ;
Majda, AJ ;
McLaughlin, DW ;
Tabak, EG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (25) :14216-14221