Anomalous diffusion of a tracer advected by wave turbulence

被引:14
作者
Balk, AM [1 ]
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
基金
美国国家科学基金会;
关键词
passive advection; turbulent transport; wave turbulence; random waves; near-identity transformation; Green's function;
D O I
10.1016/S0375-9601(01)00014-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the advection of a passive tracer when the velocity field is a superposition of random waves. Green's function for the turbulent transport (turbulent diffusion and turbulent drift) is derived. This Grim's function is shown to imply sub-diffusive or super-diffusive behavior of the tracer. For the analysis we introduce the statistical near-identity transformation. The results are confirmed by numerical simulations. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:370 / 378
页数:9
相关论文
共 33 条
[11]  
Carmona RA, 1997, ANN APPL PROBAB, V7, P265
[12]   On a possible mechanism of anomalous diffusion by Rossby waves [J].
Dupont, F ;
McLachlan, RI ;
Zeitlin, V .
PHYSICS OF FLUIDS, 1998, 10 (12) :3185-3193
[13]  
EFTIMIU C, 1990, J ELECTROMAGNET WAVE, V4, P847
[14]   Dynamics of particles advected by fast rotating turbulent fluid flow: Fluctuations and large-scale structures [J].
Elperin, T ;
Kleeorin, N ;
Rogachevskii, I .
PHYSICAL REVIEW LETTERS, 1998, 81 (14) :2898-2901
[15]  
HERTERICH K, 1982, J PHYS OCEANOGR, V12, P704, DOI 10.1175/1520-0485(1982)012<0704:THDOTB>2.0.CO
[16]  
2
[17]  
Komorowski T, 1997, ANN APPL PROBAB, V7, P229
[18]   DIFFUSION BY A RANDOM VELOCITY FIELD [J].
KRAICHNAN, RH .
PHYSICS OF FLUIDS, 1970, 13 (01) :22-+
[19]  
Majda AJ, 1999, PHYS REP, V314, P238
[20]   A one-dimensional model for dispersive wave turbulence [J].
Majda, AJ ;
McLaughlin, DW ;
Tabak, EG .
JOURNAL OF NONLINEAR SCIENCE, 1997, 7 (01) :9-44