Microcrystalline silicon deposition: Process stability and process control

被引:28
作者
van den Donker, M. N. [1 ]
Kilper, T.
Grunsky, D.
Rech, B.
Houben, L.
Kessels, W. M. M.
de Sanden, M. C. M. van
机构
[1] Forschungszentrum, Inst Photovolta, D-52425 Julich, Germany
[2] Forschungszentrum, Inst Festkorperforsch, D-52425 Julich, Germany
[3] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
关键词
depth profiling; plasma processing and deposition; microcrystalline silicon; solar cells;
D O I
10.1016/j.tsf.2006.11.119
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Applying in situ process diagnostics, we identified several process drifts occurring in the parallel plate plasma deposition of microcrystalline silicon (mu c-Si:H). These process drifts are powder formation (visible from diminishing dc-bias and changing spatial emission profile on a time scale of 10(0) s), transient SiH4 depletion (visible from a decreasing SiH emission intensity on a time scale of 10(2) s), plasma heating (visible from an increasing substrate temperature on a time scale of 10(3) s) and a still puzzling long-term drift (visible from a decreasing SiH emission intensity on a time scale of 10(4) s). The effect of these drifts on the crystalline volume fraction in the deposited films is investigated by selected area electron diffraction and depth-profiled Raman spectroscopy. An example shows how the transient depletion and long-term drift can be prevented by suitable process control. Solar cells deposited using this process control show enhanced performance. Options for process control of plasma heating and powder formation are discussed. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:7455 / 7459
页数:5
相关论文
共 31 条
[11]   High rate growth of microcrystalline silicon at low temperatures [J].
Kondo, M ;
Fukawa, M ;
Guo, LH ;
Matsuda, A .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2000, 266 :84-89
[12]   High-rate deposition of highly crystallized silicon films from inductively coupled plasma [J].
Kosku, N ;
Kurisu, F ;
Takegoshi, M ;
Takahashi, H ;
Miyazaki, S .
THIN SOLID FILMS, 2003, 435 (1-2) :39-43
[13]  
Luysberg M, 2005, MATER RES SOC SYMP P, V862, P123
[14]   Heating modes in capacitively coupled RF plasmas observed with emission spectroscopy [J].
Mahony, CMO ;
Graham, WG .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 1999, 27 (01) :72-73
[15]   Microcrystalline silicon solar cells deposited at high rates [J].
Mai, Y ;
Klein, S ;
Carius, R ;
Wolff, J ;
Lambertz, A ;
Finger, F ;
Geng, X .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (11)
[16]   COMPLETE MICROCRYSTALLINE P-I-N SOLAR-CELL - CRYSTALLINE OR AMORPHOUS CELL BEHAVIOR [J].
MEIER, J ;
FLUCKIGER, R ;
KEPPNER, H ;
SHAH, A .
APPLIED PHYSICS LETTERS, 1994, 65 (07) :860-862
[17]   Optimization of plasma-enhanced chemical vapor deposition of hydrogenated amorphous silicon [J].
Oversluizen, G ;
Lodders, WHM .
JOURNAL OF APPLIED PHYSICS, 1998, 83 (12) :8002-8009
[18]   Possible routes for cluster growth and particle formation in RF silane discharges [J].
Perrin, Jerome ;
Boehm, Christian ;
Etemadi, Roxana ;
Lloret, Antoni .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 1994, 3 (03) :252-261
[19]   A new concept for mass production of large area thin-film silicon solar cells on glass [J].
Rech, B ;
Repmann, T ;
Wieder, S ;
Ruske, M ;
Stephan, U .
THIN SOLID FILMS, 2006, 502 (1-2) :300-305
[20]   Microcrystalline silicon for large area thin film solar cells [J].
Rech, B ;
Roschek, T ;
Repmann, T ;
Müller, J ;
Schmitz, R ;
Appenzeller, W .
THIN SOLID FILMS, 2003, 427 (1-2) :157-165