In vivo analysis of Ascl1 defined progenitors reveals distinct developmental dynamics during adult neurogenesis and gliogenesis

被引:123
作者
Kim, Euiseok J.
Leung, Cheuk T.
Reed, Randall R.
Johnson, Jane E.
机构
[1] Univ Texas Dallas, SW Med Ctr, Dept Neurosci, Dallas, TX 75390 USA
[2] Johns Hopkins Univ, Sch Med, Ctr Sensory Biol, Baltimore, MD 21205 USA
[3] Johns Hopkins Univ, Sch Med, Dept Mol Biol & Genet, Baltimore, MD 21205 USA
关键词
Mash1; bHLH transcription factor; adult neurogenesis; oligodendrocyte precursor; neural stem cell; gliogenesis;
D O I
10.1523/JNEUROSCI.3178-07.2007
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In the adult mammalian brain, new neurons and glia are continuously generated but molecular factors regulating their differentiation and lineage relationships are largely unknown. We show that Ascl1, a bHLH ( basic helix-loop-helix) transcription factor, transiently labels neuronal and oligodendrocyte precursors in the adult brain. Using in vivo lineage tracing with inducible Cre recombinase, we followed the maturation of these precursors in four distinct regions. In the hippocampus, Ascl1 mostly marks type-2a progenitor cells with some late stage type-1 stem cells. Thirty days after Ascl1 expression, although a majority of the cells matured to granule neurons, a few cells remained as immature progenitors. By 6 months, however, essentially all Ascl1 lineage cells were granule neurons. In contrast, in the olfactory bulb neuronal lineage, Ascl1 is restricted to transit amplifying cells, and by 30 d all cells matured into GABAergic interneurons. Ascl1 also broadly marks oligodendrocyte precursors in subcortical gray and white matter regions. In the corpus callosum, Ascl1 defines a ventral layer of early oligodendrocyte precursors that do not yet express other early markers of this lineage like PDGFR alpha and Olig2. By 30 d, most had transitioned to mature oligodendrocytes. In contrast, Ascl1 expressing oligodendrocyte precursors in gray matter already coexpressed the early oligodendrocyte markers, but by 30 d they mostly remained as precursors. Our results reveal that Ascl1 is a common molecular marker of early progenitors of both neurons and oligodendrocytes in the adult brain, and these Ascl1 defined progenitors mature with distinct dynamics in different brain regions.
引用
收藏
页码:12764 / 12774
页数:11
相关论文
共 56 条
[1]   In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog [J].
Ahn, S ;
Joyner, AL .
NATURE, 2005, 437 (7060) :894-897
[2]   AUTORADIOGRAPHIC AND HISTOLOGICAL STUDIES OF POSTNATAL NEUROGENESIS .4. CELL PROLIFERATION AND MIGRATION IN ANTERIOR FOREBRAIN, WITH SPECIAL REFERENCE TO PERSISTING NEUROGENESIS IN OLFACTORY BULB [J].
ALTMAN, J .
JOURNAL OF COMPARATIVE NEUROLOGY, 1969, 137 (04) :433-&
[3]   For the long run: Maintaining germinal niches in the adult brain [J].
Alvarez-Buylla, A ;
Lim, DA .
NEURON, 2004, 41 (05) :683-686
[4]   Ascl1 defines sequentially generated lineage-restricted neuronal and oligodendrocyte precursor cells in the spinal cord [J].
Battiste, James ;
Helms, Amy W. ;
Kim, Euiseok J. ;
Savage, Trisha K. ;
Lagace, Diane C. ;
Mandyam, Chitra D. ;
Eisch, Amelia J. ;
Miyoshi, Goichi ;
Johnson, Jane E. .
DEVELOPMENT, 2007, 134 (02) :285-293
[5]   Proneural genes and the specification of neural cell types [J].
Bertrand, N ;
Castro, DS ;
Guillemot, F .
NATURE REVIEWS NEUROSCIENCE, 2002, 3 (07) :517-530
[6]   The adult mouse hippocampal progenitor is neurogenic but not a stem cell [J].
Bull, ND ;
Bartlett, PF .
JOURNAL OF NEUROSCIENCE, 2005, 25 (47) :10815-10821
[7]   Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus [J].
Cameron, HA ;
McKay, RDG .
JOURNAL OF COMPARATIVE NEUROLOGY, 2001, 435 (04) :406-417
[8]   Efficient recolonisation of progenitor-depleted areas of the CNS by adult oligodendrocyte progenitor cells [J].
Chari, DM ;
Blakemore, WF .
GLIA, 2002, 37 (04) :307-313
[9]   NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS [J].
Dawson, MRL ;
Polito, A ;
Levine, JM ;
Reynolds, R .
MOLECULAR AND CELLULAR NEUROSCIENCE, 2003, 24 (02) :476-488
[10]   The glial identity of neural stem cells [J].
Doetsch, F .
NATURE NEUROSCIENCE, 2003, 6 (11) :1127-1134