An intuitionistic OWA operator

被引:21
作者
Mitchell, HB [1 ]
机构
[1] Elta Syst Ltd, Sect 6174, Ashdod, Israel
关键词
Ordered Weighted Average; OWA; intuitionistic fuzzy sets; ordered intuitionistic fuzzy sets; extension principle; intuitionistic extension principle; fuzzy aggregation; multiple-criteria decision-making;
D O I
10.1142/S0218488504003247
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The OWA (Ordered Weighted Average) operator is a powerful non-linear operator for aggregating a set of inputs a(i),i is an element of {1,2,...,M}. In the original OWA operator the inputs are crisp variables a(i). This restriction was subsequently removed by Mitchell and Schaefer who by application of the extension principle defined a fuzzy OWA operator which aggregates a set of ordinary fuzzy sets A(i). We continue this process and define an intuitionistic OWA operator which aggregates a set of intuitionistic fuzzy sets (A) over tilde (i). We describe a simple application of the new intuitionistic OWA operator in multiple-expert multiple-criteria decision-making.
引用
收藏
页码:843 / 860
页数:18
相关论文
共 38 条
[11]  
CROSS V, 1998, P FUZZ IEEE 98, V1, P773
[12]  
CROSS V, P NAFIPS 98
[13]   Soft median adaptive predictor for lossless picture compression [J].
Estrakh, DD ;
Mitchell, HB ;
Schaefer, PA ;
Mann, Y ;
Peretz, Y .
SIGNAL PROCESSING, 2001, 81 (09) :1985-1989
[14]   Using statistical viewpoint in developing correlation of intuitionistic fuzzy sets [J].
Hung, WL .
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2001, 9 (04) :509-516
[15]  
Kacprzyk J., 1990, P INT C FUZZ LOG NEU, P819
[16]  
Klir G, 1995, Fuzzy Sets and Fuzzy Logic: Theory and Applications, V4
[17]  
Mitchell HB, 2000, INT J INTELL SYST, V15, P317, DOI 10.1002/(SICI)1098-111X(200004)15:4<317::AID-INT4>3.0.CO
[18]  
2-J
[19]  
Mitchell HB, 2000, INT J INTELL SYST, V15, P981, DOI 10.1002/1098-111X(200011)15:11<981::AID-INT1>3.0.CO
[20]  
2-Z