Data-driven design of inorganic materials with the Automatic Flow Framework for Materials Discovery

被引:38
作者
Oses, Corey [1 ]
Toher, Cormac [1 ]
Curtarolo, Stefano [2 ]
机构
[1] Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27706 USA
[2] Duke Univ, Mat Sci Phys & Chem, Durham, NC 27706 USA
关键词
amorphous; ceramic; oxide; crystallographic structure; electronic structure; HIGH-ENTROPY ALLOY; METALLIC GLASSES; NEURAL-NETWORKS; RESTFUL API; FORCE-FIELD; SEARCH; AFLOWLIB.ORG; PREDICTION; ACCURACY;
D O I
10.1557/mrs.2018.207
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The expansion of programmatically accessible materials data has cultivated opportunities for data-driven approaches. Workflows such as the Automatic Flow Framework for Materials Discovery not only manage the generation, storage, and dissemination of materials data, but also leverage the information for thermodynamic formability modeling, such as the prediction of phase diagrams and properties of disordered materials. In combination with standardized parameter sets, the wealth of data is ideal for training machine-learning algorithms, which have already been employed for property prediction, descriptor development, design rule discovery, and the identification of candidate functional materials. These methods promise to revolutionize the path to synthesis, and ultimately transform the practice of traditional materials discovery to one of rational and autonomous materials design.
引用
收藏
页码:670 / 675
页数:6
相关论文
共 91 条
[1]   The GW method [J].
Aryasetiawan, F ;
Gunnarsson, O .
REPORTS ON PROGRESS IN PHYSICS, 1998, 61 (03) :237-312
[2]   Metallic glasses as structural materials [J].
Ashby, MF ;
Greer, AL .
SCRIPTA MATERIALIA, 2006, 54 (03) :321-326
[3]   Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? [J].
Bajusz, David ;
Racz, Anita ;
Heberger, Kroly .
JOURNAL OF CHEMINFORMATICS, 2015, 7
[4]   The Quickhull algorithm for convex hulls [J].
Barber, CB ;
Dobkin, DP ;
Huhdanpaa, H .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1996, 22 (04) :469-483
[5]   Room temperature lithium superionic conductivity in high entropy oxides [J].
Berardan, D. ;
Franger, S. ;
Meena, A. K. ;
Dragoe, N. .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (24) :9536-9541
[6]   Colossal dielectric constant in high entropy oxides [J].
Berardan, David ;
Franger, Sylvain ;
Dragoe, Diana ;
Meena, Arun Kumar ;
Dragoe, Nita .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2016, 10 (04) :328-333
[7]   THE INORGANIC CRYSTAL-STRUCTURE DATA-BASE [J].
BERGERHOFF, G ;
HUNDT, R ;
SIEVERS, R ;
BROWN, ID .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1983, 23 (02) :66-69
[8]   Neural networks in materials science [J].
Bhadeshia, HKDH .
ISIJ INTERNATIONAL, 1999, 39 (10) :966-979
[9]   Ab initio molecular simulations with numeric atom-centered orbitals [J].
Blum, Volker ;
Gehrke, Ralf ;
Hanke, Felix ;
Havu, Paula ;
Havu, Ville ;
Ren, Xinguo ;
Reuter, Karsten ;
Scheffler, Matthias .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (11) :2175-2196
[10]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32